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Figure F1. For shadow removal, existing state-of-the-art unsupervised method Mask-ShadowGAN [11], supervised methods DeShad-
owNet [17] and DSC [12], and traditional methods Gong [6] fail to remove shadows properly and create artifacts (see regions inside red
boxes). Compared to them, our DC-ShadowNet generates a better shadow-free output.

1. Additional Results
We show additional results and comparisons of our

method with the baseline methods. To evaluate shadow
removal performance, we use the following datasets:
SRD [17], AISTD [15], ISTD [18], USR [11] and LRSS [7]

(a soft shadow dataset). We also provide more details of our
network architecture and training procedure.

Quantitative Evaluation The details of our method and
training parameters are provided in Sec. 3 and Sec. 4 of
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(a) Input (b) Ours (c) MaskShadowGAN [11] (d) DSC [12] (e) DeshadowNet [17] (f) Gong et al. [6]

Figure F2. Comparison results on the SRD dataset. Qualitative comparisons of our DC-ShadowNet with the state-of-the-art unsuper-
vised method (c) Mask-ShadowGAN [11], supervised methods (d) DSC [12], (e) DeShadowNet [17], and traditional method (f) Gong et
al. [6]. Our DC-ShadowNet generates the best shadow-free output image.

the main paper. The quantitative evaluations on the SRD,
AISTD, and LRSS datasets are provided in Sec. 4 of the
main paper. For all the datasets, the image resolution used
in our evaluations is set to 256×256. For the ISTD dataset,
the quantitative evaluation is shown in Table T1. From the
results, we can observe that our method outperforms all the
baseline methods. Compared to the state-of-the-art unsu-
pervised method Mask-ShadowGAN [11], our results for
the shadow regions are better by ∼12%, showing the effec-
tiveness of our method.

Qualitative Evaluation The qualitative results for the
SRD dataset are shown in Figs. F2. For the AISTD dataset,

the results are shown in Figs. F3 and F4. For the USR
dataset, the results are shown in Fig. F5. For the LRSS soft-
shadow dataset, the results are shown in Fig. F6.

We can observe that our DC-ShadowNet produces more
robust and accurate shadow removal results than the com-
peting baseline methods. Our results are robust on both hard
and soft shadow images, and highlight the effectiveness of
our method for shadow removal under diverse scenes and
different shadow types.

Network Architecture and Training Details The en-
coders of our generators are based on ResNet [10] and
have four residual blocks. The corresponding decoders use



(a) Input (b) Ground-Truth (c) Ours (d) Mask-ShadowGAN [11] (e) Param+M+D-Net [16]

(f) ST-CGAN [18] (g) SP+M-Net [15] (h) Gong et al. [6] (i) Guo et al. [9] (j) Yang et al. [19]

(a) Input (b) Ground-Truth (c) Ours (d) Mask-ShadowGAN [11] (e) Param+M+D-Net [16]

(f) ST-CGAN [18] (g) SP+M-Net [15] (h) Gong et al. [6] (i) Guo et al. [9] (j) Yang et al. [19]

Figure F3. Comparison results on the AISTD dataset. Qualitative comparisons of our DC-ShadowNet with the state-of-the-art unsuper-
vised method (d) Mask-ShadowGAN [11], weakly-supervised method (e) Param+M+D-Net [16], supervised methods (f) ST-CGAN [18],
(g) SP+M-Net [15], and traditional methods (h) Gong et al. [6], (i) Guo et al. [9] and (j) Yang et al. [19].

transpose convolutions to generate the output that is of the
same resolution as the input. Our discriminators are based
on global and local PatchGAN [13] architectures contain-
ing five convolution layers. The global discriminator pro-
cesses an entire image of resolution 286×286 while the
local discriminator processes small patches of resolution
70×70 cropped randomly from the image. For data aug-
mentation, we resized images to 286×286, and randomly
cropped them to 256×256.

In the training stage, our network is optimized using the
Adam method [14] with a constant learning rate of 1×10−4

for the first-half of iterations and with a linearly decaying
learning rate for the second-half of iterations. For test-time
training, we initialize our network with the weights learned
during the main training stage and use a smaller learning
rate of 1×10−6.

2. Method Details
2.1. Shadow-Free Chromaticity

As described in Sec. 3.1 of the main paper, obtaining
shadow-free chromaticityσσσphy

sf from the input shadow image
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Figure F4. Comparison results on the AISTD dataset. Qualitative comparisons of our DC-ShadowNet with the state-of-the-art unsuper-
vised method (d) Mask-ShadowGAN [11], weakly-supervised method (e) Param+M+D-Net [16], supervised methods (f) ST-CGAN [18],
(g) SP+M-Net [15], and traditional methods (h) Gong et al. [6], (i) Guo et al. [9] and (j) Yang et al. [19].

Is requires two steps: (1) Entropy Minimization, and (2)
Illumination Compensation.

Entropy Minimization We first obtain the log-
chromaticity representation of the input shadow image,
and then use entropy minimization to find the projection
direction θ, which is invariant to shadows [2, 4]. Projecting
the log-chromaticity of the input shadow image into the
direction orthogonal to θ, we can obtain a shadow-free
chromaticity map σσσent

sf that no longer contains any shadows
(see Figs. F9b for some examples of hard and soft shadow

images).

Illumination Compensation To obtain the shadow-free
chromaticity σσσent

sf , we project the original input chromatic-
ity into the direction that is orthogonal to the direction θ.
Due to this projection, we lose the original light color; and,
to compensate for this, we compute the light color (using
about 30% of the brightest pixels from the input shadow
image) to obtain the color-compensated shadow-free chro-
maticity σσσphy

sf . The new shadow-free chromaticity map σσσphy
sf

has the proper light colors (see Figs. F9c for hard and soft



(a) Input (b) Ours (c) Mask-ShadowGAN [12] (d) CycleGAN [20] (e) DHAN [1]

Figure F5. Comparison results on the USR dataset. (a) Input image, (b) Our result, (c) Unsupervised methods Mask-ShadowGAN [11]
and (d) CycleGAN, Supervised method (e) DHAN [1]. The results show the better performance of our method.

shadow examples).
To our knowledge, our method is the first method to

addresses both hard and soft shadows. While existing
physics-based methods [5, 3] can handle hard shadows, they
are not designed to handle soft shadows. While we em-
ploy the same physics-based techniques of these methods
to obtain the shadow-free chromaticity, unlike these meth-
ods, we do not use the shadow-free chromaticity to de-
tect shadow edges and use the detected edges for remov-
ing shadows [5, 3]. Instead, we use the shadow-free chro-
maticity to design our novel shadow-free chromaticity loss
(see Sec. 3.1 in the main paper) that encourages the output
chromaticity to be similar to the shadow-free chromaticity
(see Figs. F9c & F9e for some hard and soft shadow exam-
ples). This makes our method perform better on hard shad-
ows, and address soft shadows robustly compared to exist-
ing physics-based methods even though our method shares
the same physics-based techniques with them.

Handling Achromatic Surfaces To compute the cor-
rect invariant direction θ, similar to physics-based meth-
ods [5, 3, 8], our method assumes that the image surfaces
are not achromatic (i.e. the image surfaces are not gray or
white), since for achromatic surfaces the entropy minimiza-

tion can be improper. This is shown in Fig. F10, where
for the input shadow images that are nearly achromatic (see
Fig. F10a), the corresponding entropy curves show multiple
local minimas (see Fig. F10b) leading to improper entropy
minimization and inaccurate recovery of shadow-free chro-
maticity maps (see Fig. F10c). Note that, (1) Given an en-
tropy curve, we use MATLAB function ISLOCALMIN with
its PROMINENCE parameter set to 0.05 to obtain the min-
imas. If multiple minimas are found with similar promi-
nence values, it is assumed that the entropy minimization
is improper and for such cases, we do not use our shadow-
free chromaticity loss to avoid incorrect supervision to our
method; and (2) Since our method also uses other losses
such as adversarial and shadow-robust perceptual features
(see Sec. 3 in the main paper) to guide our shadow-free
output, our method can still do proper shadow removal for
achromatic shadow images (see Fig. F10d).

In Fig. F10, we also show comparisons with chromatic
shadow input images (see Fig. F10i), where we can see
for such images, the entropy curves have prominent global
minimas (see Fig. F10j). And, both the obtained shadow-
free chromaticity maps and shadow-free outputs are proper
(see Figs. F10k and F10l respectively). In sum, our method,
DC-ShadowNet, can handle both chromatic and achromatic



(a) Input (b) Ours (c) [11] (d) SP+M-Net [15] (e) DHAN [1] (f) Gryka [7] (g) Guo [9] (h) Guo [9] (auto)

Figure F6. Comparison results on the soft shadow LRSS dataset (a) Input image, (b) Our result, (c) Unsupervised method Mask-
ShadowGAN [11], Supervised methods (d) SP+M-Net [15] and (e) DHAN [1]. (f)∼(h) are the results of the traditional methods (auto
means automatic detection). Our method, trained using unsupervised learning, generates better shadow-free results.

(a) Calibration on LRSS (b) Calibration on SRD

Figure F7. Calibration results on both the soft-shadow dataset
LRSS and shadow dataset SRD show that the Conv22 layer (i.e.
l = 22) generates the minimum RMSE error, indicating that it
provides features that are most invariant to shadows.

shadow images properly due to the design and usage of our
unsupervised loss functions and network architecture.

2.2. Shadow-Robust Features

To obtain the shadow-robust features for our shadow-
robust feature loss (see Sec. 3.2 in the main paper), we per-
form a calibration experiment.

Calibration Experiment We take 62 shadow and
shadow-free ground-truth image pairs from the LRSS soft-
shadow dataset, and 408 shadow and shadow-free ground-
truth image pairs from the SRD shadow dataset. For each
dataset, given an input shadow image and its corresponding
ground-truth shadow-free image, we select a layer l in the
pre-trained VGG16 network, and calculate the RMSE score
between the features obtained for the input shadow im-
age and the features obtained for the ground-truth shadow-
free image. This is repeated for all the image pairs in a
dataset after which we compute the mean RMSE score of
that dataset. The experimental results are shown Fig F7.
The results shown in Fig F7 show that for both the SRD and
LRSS datasets, the minimum mean RMSE score is obtained
at the Conv22 layer (i.e. l∗ = 22) of the VGG-16 network.
This indicates that the Conv22 layer of the VGG-16 net-
work provides features that are most invariant to shadows
(also see Fig. F8 for some qualitative examples), which we
use to design our shadow-robust feature loss.



Table T1. RMSE results of our DC-ShadowNet compared to the state-of-the-art shadow removal methods on the ISTD dataset. M shows
that ground-truth shadow masks are also used in training.

Method Training All Shadow Non-Shadow
Our DC-ShadowNet Unpaired 5.88 9.36 5.19

Mask-ShadowGAN [11] Unpaired 6.66 10.68 5.86
Param+M+D-Net [16] Unpaired + M 7.90 11.73 7.13

ST-CGAN [18] Paired + M 6.59 9.38 6.03
SP+M-Net [15] Paired + M 7.73 10.99 7.08

DAD [21] Paired 6.72 8.65 6.39
Gong et al. [6] - 8.10 14.18 6.89
Guo et al. [8] Paired + M 9.59 18.56 7.81

Yang et al. [19] - 15.53 19.54 14.73
Input Image - 10.85 31.61 6.72

(a) Input Shadow Image (Is) (b) Feature Map (V (Is)) (c) Output Shadow-Free (Zsf ) (d) Feature Map (V (Zsf ))

Figure F8. (a) Input shadow image Is, (b) Sample feature map for Is, (c) Output shadow-free image Zsf , and (d) Sample feature map for
Zsf . We can observe that features in (b) for the input shadow images are less affected by shadows and they are similar to the features in
(d) owing to our shadow-robust feature loss.



3. Ablation Results
The quantitative results for our ablation experiments are

shown in Sec. 5 of the main paper. Here we show the
corresponding qualitative results. Fig. F11 demonstrates
the effectiveness of the shadow-invariant chromaticity loss
Lchroma, shadow-robust feature loss Lfeature, boundary-
smoothness loss Lsmooth, and the domain classifiers Φg

s and
Φd

sf . As also supported by the qualitative results, each of
these components is important in providing better perfor-
mance to our method for both hard and soft shadow images.

Test-Time Training Test-time training is an effective
technique to reduce any possible domain gap between the
training and testing data. Since our method uses unsuper-
vised learning, it can be used for test-time training which as
we show, further improves the performance of our method.
To perform our test-time training, given a test image as in-
put, we finetune our generator Gs (with its weights initial-
ized with the weights learned in the training stage) using
our unsupervised shadow-invariant chromaticity, shadow-
robust feature, and boundary-smoothness losses, since these
losses are only dependent upon the test input image. The
finetuning process is carried out until the total loss has
reached convergence upon which the generated shadow-free
image is taken as the output shadow-free image.

To evaluate the effectiveness of test-time training, we use
34 shadow and ground-truth shadow-free image pairs from
the LRSS dataset that we do not use during training (see
‘Results on Soft Shadows’ in Sec. 4 of the main paper).
We perform the aforementioned finetuning process on each
test image and observe that the overall shadow removal per-
formance on the 34 images improves from 3.48 to 3.36 in
RMSE and from 31.01 to 31.31 in PSNR. The qualitative
results are shown in Fig. F12, and they confirm the improve-
ment brought in by test-time training for our method.
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Figure F9. (a) Input shadow image, (b) Shadow-free chromaticity after entropy minimization σσσent
sf , (c) Shadow-free chromaticity after
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(a) Input Achromatic Image (b) Entropy Minimization (c) σσσent
sf (d) Output Image

(i) Input Chromatic Image (j) Entropy Minimization (k) σσσent
sf (l) Output Image

Figure F10. For achromatic input shadow images shown in (a), the entropy curves shown in (b) have multiple local minimas (due to the
presence of inherent noise in the images) and the entropy minimization is improper. This leads to inaccurate recovery of the shadow-free
chromaticity maps as shown in (c). However, as shown in (d), due to the presence of our other losses such as adversarial and shadow-robust
perceptual features, our DC-ShadowNet is still able to remove shadows properly. For chromatic input images shadow images shown in (i),
the entropy curves shown in (j) have distinct global minima leading to proper recovery of shadow-free chromaticity maps and shadow-free
outputs shown in (k) and (l) respectively.



(a) Input (b) w/o Φg
s and Φd

sf (c) w/o Φd
sf (d) w/o Φg

s

(e) w/o Lchroma (f) w/o Lfeature (g) w/o Lsmooth (h) Output

Figure F11. Ablation Results (a) Input shadow image, (b), (c) and (d) are the shadow removal results without our domain classifiers Φg
s

and Φd
sf , discriminator domain classifier Φd

sf , and generator domain classifier Φg
s , respectively. (e), (f) and (g) are the shadow removal

results without our physics-based shadow-free chromaticity loss, shadow-robust feature loss and boundary smoothness loss respectively,
(h) is the output from our method DC-ShadowNet that has all these components. As we can observe, the best results are obtained when all
the components are used in our method.

(a) Input Soft Shadow (b) Ours (w/o test-time-train) (c) Ours (w/ test-time-train) (d) Mask-ShadowGAN [11]

Figure F12. Effectiveness of Test-Time Training (a) Input image, (b) and (c) show our results without and with test-time-training, (d)
Result of Mask-ShadowGAN [11] for comparison.


