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We provide more implementation details and experimen-
tal results in this supplementary.

1. More Training Details

In this section, we present more training and implemen-
tation details about our RADA and baseline setup on the
different datasets. Following [3], we initialize the feature
extractor backbone (e.g., ResNet-50, ResNet-101) with the
pre-trained parameters on ImageNet. We employ stochas-
tic gradient descent (SGD) as optimizer with a momentum
term of 0.9. For the data augmentation, we perform random
flipping (horizontally), and scaling with a factor in 1.125
followed by a crop. More details are described as follows.

For Office-31 and Office-Home, following [6, 16, 3], we
use ResNet-50 as backbone. The initial learning rate is set
to 1e-3. The input image size is 224×224 and the batch size
is 36. We train the models for 100 epochs and evaluate their
adaptation performance. We use the default train/test/val
split protocol as [3, 6] for both the two datasets.

For VisDA-2017, following [6, 3], we use ResNet-50 as
backbone. The initial learning rate is set to 1e-4. The input
image size is 224×224, and the batch size is 36. We follow
the train/val/test split protocol of [3] and train the models
for 150 epochs.

For Digit-Five, following [12, 7, 13], we use Cov3FC2

as backbone which is trained from scratch. The initial learn-
ing rate is set to 0.05. The input image size is 32×32, and
the batch size is 256 (256 = 4×64 where 4 means the num-
ber of source domains). We follow the train/val/test split
protocol of [7]. We train the models for 50 epochs.

For DomainNet, following [7], we use ResNet-101 as
backbone. The initial learning rate is set to 0.002 and mo-
mentum set to 0.9. The input image size is 224×224, and
the batch size is 30 (30 = 5×6 where 5 means the number of
source domains). We follow the train/val/test split protocol
of [7]. We train the models for 40 epochs.

*Corresponding Author.

2. More Details about When to Start RADA

As we have described in the main manuscript, inspired
by the popular learning rate (lr) adjustment algorithms [8, 1]
which adjust the learning rate if no improvement is seen
for a ‘patience’ number of epochs (where ‘patience’ is usu-
ally set to 2 to 10) 1, we start RADA if no improvement of
the discrimination capability is seen for a ‘patience’ num-
ber of epochs and we denote this hyper-parameter as K.
Note that once RADA is started, it will be used for each
iteration. Particularly, as described in lines128-136 in our
main manuscript, we use the average entropy ei of domain
classification for all the training samples to measure the dis-
crimination capability of the domain discriminator in the ith

epoch. A larger average entropy indicates a poorer discrimi-
nation capability of the domain discriminator. RADA starts
in the ith epoch when no improvement of the discrimina-
tion capability (average entropy) is seen for K epochs, i.e.,
et ≥ ei−K−1, for t = i− 1 to t = i−K.

3. Adversarial Training on a Mini-batch After
Relabeling

As is done in previous adversarial domain adaptation
methods, we perform mini-batch level optimization where
a batch consists of both source and target domain sam-
ples. Once RADA is activated, for each mini-batch, we first
check whether each target sample should be relabeled as a
source sample and relabel them if deemed so. Then the ad-
versarial training is performed under the updated domain

1https://pytorch.org/docs/stable/optim.html?highlight=reducelronplateau
#torch.optim.lr scheduler.ReduceLROnPlateau



labels. The new domain adversarial loss is thus

Lnew
adv =− 1

ns + nt→s + nm

( ns∑
i=1

logD(F (xs
i ))

+

nt→s∑
j=1

logD(F (xt→s
j )) +

nm∑
k=1

logD(f̃sk)
)

− 1

nt − nt→s

nt−nt→s∑
l=1

log(1−D(F (xt
l))),

where ns, nt, nt→s, nm, nt − nt→s denote the num-
ber of original source samples xs

i , original target sam-
ples, relabeled target samples xt→s

j , the mixed/generated
source samples f̃sk (see description around Eq. (6) in our
manuscript), and the remaining target samples xt

l , in a min-
batch, respectively. For simplicity, we set nm = nt→s.

4. More Experimental Results
More Results Showing the Degradation of Domain Dis-
criminator vs. Our Solution. In our main manuscript,
we have revealed the degradation problem of the domain
discriminator of the baseline scheme in Figure 2 (Fig-
ure 1 here), and showed that our scheme alleviates this and
achieves a better alignment state (i.e., a lower domain dis-
crepancy measurement) on Office-31 (with the analysis pre-
sented in lines140-188 and lines195-209).

Similar trends have been observed on the other datasets.
Figure 2 shows the results on Office-Home of the set-
ting Ar→Cl, and VisDA-2017. For the baseline scheme
CDAN [6] (marked by green), the discrimination capabil-
ity of the domain discriminator deteriorates w.r.t. the gradu-
ally aligned distributions after the initial dip of the entropy,
which in turn provides less driving power to the feature ex-
tractor for alignment. In contrast, thanks to our strategy
of re-labeling the aligned target samples as source samples,
our scheme (marked by red) could improve the discrimina-
tion capability of the domain discriminator (i.e., preventing
the increasing of the entropy) and thus in turn further drives
feature alignment.
Influence of Metric for Measurement of Alignment. In
RADA, as described in our main manuscript, to measure
whether a target sample is a “well aligned” sample or not,
we propose to simply use the entropy of domain discrim-
inator to make decision. When the entropy of the domain
discriminator is larger than a threshold τ , we define it as a
“well aligned” sample, where τ is a hyper-parameter (see
ablation study in Figure 4 in our main manuscript).

Moreover, we have studied the influence of using differ-
ent metric designs for the measurement. We compare sev-
eral schemes. 1) HC : we use the entropy of the object clas-
sifier, i.e., H(C(F (·))), as metric to select “well-aligned”
target samples. For a target sample, when the entropy of the
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Figure 1: The variation of (a) the discrimination capabil-
ity of the domain discriminator (measured by entropy of
domain classification) and (b) alignment state (measured
by domain discrepancy measure of MMD) in the training.
These experiments are conducted on Office-31 of the setting
W→A.
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Figure 2: The variation of the discrimination capability of
the domain discriminator (measured by entropy of domain
classification) and alignment state (measured by domain
discrepancy measure of MMD) in the training. These ex-
periments are conducted on (a) Office-Home of the setting
Ar→Cl and on (b) VisDA-2017.

object classification is smaller than a threshold (which indi-
cates the sample is easy to transfer), we define it as a “well
aligned” sample, where the threshold is a hyper-parameter
obtained by grid search. psrc: For a target sample, we use
the predicted probability of being source domain, i.e., psrc,
as metric to select “well-aligned” target samples. When
psrc is larger than a threshold (which indicates the sam-
ple is near to the source domain), we define it as a “well
aligned” sample, where the threshold is a hyper-parameter
obtained by grid search. H∗psrc: we use the product of the
entropy of the domain discriminator H and the predicted
probability of being source domain psrc, as metric to se-
lect “well-aligned” target samples. When H ∗ psrc is larger
than a threshold, we define it as a “well aligned” sample,
where the threshold is a hyper-parameter obtained by grid
search. H: our scheme which simply uses the entropy of the



Table 1: Ablation study on the different design choices for
the metric to select “well aligned” target samples.

Method VisDA-2017

DANN (Baseline) [4] 61.23
DANN + RADA w/ HC 63.78
DANN + RADA w/ psrc 64.51

DANN + RADA w/ H ∗ psrc 65.77
DANN + RADA w/ H 65.91

CDAN (Baseline) [6] 70.82
CDAN + RADA w/ HC 72.87
CDAN + RADA w/ psrc 74.18

CDAN + RADA w/ H ∗ psrc 75.83
CDAN + RADA w/ H 75.62

domain discriminator H as metric to select “well-aligned”
target samples.

Table 1 shows the results. The schemes CDAN+RADA
w/ H and CDAN+RADA w/ H ∗ psrc achieve very similar
performance but significantly outperform the baseline and
our schemes using other metrics. We analyse that simul-
taneously considering the entropy of the domain discrimi-
nator H and the predicted probability of being source do-
main psrc should better cover the “well-aigned” target sam-
ples. Because when some well-aligned target samples are
very close to the source domain center but far away from
the boundary of the domain discriminator, these target sam-
ples would have small entropy value w.r.t. the domain dis-
criminator, which should be relabeled but may be missed
when only the entropy is taken as the metric. We found
CDAN+RADA w/ H and CDAN+RADA w/ H∗psrc achieve
very similar performance, which may because the above
cases are rare in practices. For simplicity, we use the en-
tropy of the domain discriminator as the metric to select
“well aligned” samples by default, i.e., CDAN+RADA w/
H.

5. Comparison with State-of-the-Arts (Com-
plete Version)

For Table 4 (a)(c) and (d) in our main manuscript, to
save space, we only present the average accuracy. Here, we
also present the detailed results of each sub-setting in Ta-
ble 2, Table 3, and Table 4, for Office-Home, Digit-Five,
and DomainNet, respectively. We can observe that our
CDAN+RADA achieves the state-of-the-art performance.
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Table 2: Performance (%) comparisons on Office-Home with the state-of-the-art approaches for unsupervised domain adap-
tation. All experiments are based on ResNet-50 pre-trained on ImageNet.

Method Venue Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

DANN [4] JMLR’16 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD [9] CVPR’18 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1

CDAN [6] NeurIPS’18 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [15] ICML’19 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

Symnets [16] CVPR’19 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2
TADA [11] AAAI’19 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
BNM [2] CVPR’20 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

Symnets-GVB [3] CVPR’20 48.0 74.3 78.5 65.1 72.2 74.4 65.1 49.4 79.7 73.8 51.7 82.5 67.8
CDAN-GVB [3] CVPR’20 55.3 74.1 78.2 62.4 72.6 71.8 63.8 54.1 80.1 73.1 58.7 83.6 69.0

GVB [3] CVPR’20 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
SRDC [10] CVPR’20 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

CDAN (Baseline) [6] NeurIPS’18 55.6 72.5 77.9 62.1 71.2 73.4 61.2 52.6 80.6 73.1 55.5 81.4 68.1
CDAN+RADA This work 56.5 76.5 79.5 68.8 76.9 78.1 66.7 54.1 81.0 75.1 58.2 85.1 71.4

Table 3: Performance (%) comparisons on Digit-Five with the state-of-the-art approaches for unsupervised domain adaptation
(on the multi-source to single target adaptation settings). Cov3FC2 is taken as backbone for all these approaches. Note that
we report the results of our baseline scheme CDAN [6] run by us where the original paper did not report results on this
dataset.

Methods Venue
Digit-Five

mt mm sv sy up Avg.

DANN [4] JMLR’16 97.9±0.83 70.8±0.94 68.5±0.85 87.3±0.68 93.4±0.79 83.6
IWAN [14] ICML’19 98.2±0.13 74.2±0.22 72.9±0.56 88.9±0.54 95.8±0.51 86.0
MDAN [17] NeurIPS’18 97.2±0.98 75.7±0.83 82.2±0.82 85.2±0.58 93.3±0.48 86.7

MCD [9] CVPR’18 96.2±0.81 72.5±0.67 78.8±0.78 87.4±0.65 95.3±0.74 86.1
DCTN [12] CVPR’18 99.4±0.06 76.2±0.51 86.8±0.31 94.4±0.58 86.4±0.54 88.6
M3SDA [7] ICCV’19 98.4±0.68 72.8±1.13 81.3±0.86 89.5±0.56 96.1±0.81 87.6
CMSS [13] ECCV’20 99.0±0.08 75.3±0.57 88.4±0.54 93.7±0.21 97.7±0.13 90.8

CDAN (Baseline) [6] NeurIPS’18 99.1±0.28 71.3±0.23 85.2±0.21 90.1±0.37 97.8±0.22 88.7
CDAN+RADA This work 99.5±0.17 78.9±0.26 90.5±0.59 98.4±0.52 98.7±0.23 93.2

Table 4: Performance (%) comparisons on DomainNet with the state-of-the-art approaches for unsupervised domain adap-
tation (on the multi-source to single target adaptation settings). All experiments are based on ResNet-101 pre-trained on
ImageNet. Note that we report the results of our baseline scheme CDAN [6] run by us where the original paper did not report
results on this dataset.

Methods Venue
DomainNet

clipart infograph painting quickdraw real sketch Avg

DANN [4] JMLR’16 45.5±0.59 13.1±0.72 37.0±0.69 13.2±0.77 48.9±0.65 31.8±0.62 32.65
DCTN [12] CVPR’18 48.6±0.73 23.5±0.59 48.8±0.63 7.2±0.46 53.5±0.56 47.3±0.47 38.27
MCD [9] CVPR’18 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.51

MDAN [17] NeurIPS’18 60.3±0.41 25.0±0.43 50.3±0.36 8.2±1.92 61.5±0.46 51.3±0.58 42.80
M3SDA [7] ICCV’19 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.67

FAR [5] Arxiv’19 62.6±0.11 26.5±0.22 53.9±0.19 13.7±0.43 63.2±0.33 52.9±0.16 45.47
CMSS [13] ECCV’20 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.52

CDAN (Baseline) [6] NeurIPS’18 63.3±0.21 23.2±0.11 54.0±0.34 16.8±0.41 62.8±0.14 50.9±0.43 45.16
CDAN+RADA This work 66.9±0.33 26.1±0.48 54.6±0.19 18.9±0.35 63.9±0.36 54.6±0.18 47.50


