Supplementary Material: Re-energizing Domain Discriminator with Sample Relabeling for Adversarial Domain Adaptation

Xin Jin1 Cuiling Lan2* Wenjun Zeng2 Zhibo Chen1*

1 University of Science and Technology of China \hspace{1cm} 2 Microsoft Research Asia, Beijing, China

jinxustc@mail.ustc.edu.cn \{culan,wezeng\}@microsoft.com chenzhibo@ustc.edu.cn

We provide more implementation details and experimental results in this supplementary.

1. More Training Details

In this section, we present more training and implementation details about our RADA and baseline setup on the different datasets. Following [3], we initialize the feature extractor backbone (e.g., ResNet-50, ResNet-101) with the pre-trained parameters on ImageNet. We employ stochastic gradient descent (SGD) as optimizer with a momentum term of 0.9. For the data augmentation, we perform random flipping (horizontally), and scaling with a factor in 1.125 followed by a crop. More details are described as follows.

For Office-31 and Office-Home, following [6, 16, 3], we use ResNet-50 as backbone. The initial learning rate is set to 1e-3. The input image size is 224×224 and the batch size is 36. We train the models for 100 epochs and evaluate their adaptation performance. We use the default train/test/val split protocol as [3, 6] for both the two datasets.

For VisDA-2017, following [6, 3], we use ResNet-50 as backbone. The initial learning rate is set to 1e-4. The input image size is 224×224, and the batch size is 36. We follow the train/val/test split protocol of [3] and train the models for 150 epochs.

For Digit-Five, following [12, 7, 13], we use Cov\textsubscript{3}FC\textsubscript{2} as backbone which is trained from scratch. The initial learning rate is set to 0.05. The input image size is 32×32, and the batch size is 256 ($256 = 4 \times 64$ where 4 means the number of source domains). We follow the train/val/test split protocol of [7]. We train the models for 50 epochs.

For DomainNet, following [7], we use ResNet-101 as backbone. The initial learning rate is set to 0.002 and momentum set to 0.9. The input image size is 224×224, and the batch size is 30 ($30 = 5 \times 6$ where 5 means the number of source domains). We follow the train/val/test split protocol of [7]. We train the models for 40 epochs.

2. More Details about When to Start RADA

As we have described in the main manuscript, inspired by the popular learning rate (lr) adjustment algorithms [8, 1] which adjust the learning rate if no improvement is seen for a ‘patience’ number of epochs (where ‘patience’ is usually set to 2 to 10)\footnote{https://pytorch.org/docs/stable/optim.html?highlight=reduceLROnPlateau\#torch.optim.lr_scheduler.ReduceLROnPlateau}, we start RADA if no improvement of the discrimination capability is seen for a ‘patience’ number of epochs and we denote this hyper-parameter as K.

Note that once RADA is started, it will be used for each iteration. Particularly, as described in lines128-136 in our main manuscript, we use the average entropy e_i of domain classification for all the training samples to measure the discrimination capability of the domain discriminator in the i^{th} epoch. A larger average entropy indicates a poorer discrimination capability. RADA starts in the i^{th} epoch when no improvement of the discrimination capability (average entropy) is seen for K epochs, i.e., $e_t \geq e_{i-K-1}$, for $t = i-1$ to $t = i-K$.

3. Adversarial Training on a Mini-batch After Relabeling

As is done in previous adversarial domain adaptation methods, we perform mini-batch level optimization where a batch consists of both source and target domain samples. Once RADA is activated, for each mini-batch, we first check whether each target sample should be relabeled as a source sample and relabel them if deemed so. Then the adversarial training is performed under the updated domain
labels. The new domain adversarial loss is thus

\[
L_{adv}^{new} = -\frac{1}{n_s + n_{t\rightarrow s} + n_{mt}} \left(\sum_{i=1}^{n_s} \log D(F(x^s_i)) + \sum_{j=1}^{n_{t\rightarrow s}} \log D(F(x^t_{j\rightarrow s})) + \sum_{k=1}^{n_{mt}} \log D(f^e_k) \right) \\
- \frac{1}{n_t - n_{t\rightarrow s}} \sum_{l=1}^{n_t - n_{t\rightarrow s}} \log(1 - D(F(x^t_l))),
\]

where \(n_s\), \(n_t\), \(n_{t\rightarrow s}\), \(n_{mt}\), \(n_t - n_{t\rightarrow s}\) denote the number of original source samples \(x^s_i\), original target samples, relabeled target samples \(x^t_{j\rightarrow s}\), the mixed/generated source samples \(f^e_k\) (see description around Eq. (6) in our manuscript), and the remaining target samples \(x^t_l\), in a minibatch, respectively. For simplicity, we set \(n_{mt} = n_{t\rightarrow s}\).

4. More Experimental Results

More Results Showing the Degradation of Domain Discriminator vs. Our Solution. In our main manuscript, we have revealed the degradation problem of the domain discriminator of the baseline scheme in Figure 2 (Figure 1 here), and showed that our scheme alleviates this and achieves a better alignment state (i.e., a lower domain discrepancy measurement) on Office-31 (with the analysis presented in lines 140-188 and lines 195-209).

Similar trends have been observed on the other datasets. Figure 2 shows the results on Office-Home of the setting Ar→Cl, and VisDA-2017. For the baseline scheme CDAN [6] (marked by green), the discrimination capability of the domain discriminator deteriorates w.r.t. the gradually aligned distributions after the initial dip of the entropy, which in turn provides less driving power to the feature extractor for alignment. In contrast, thanks to our strategy of re-labeling the aligned target samples as source samples, our scheme (marked by red) could improve the discrimination capability of the domain discriminator (i.e., preventing the increasing of the entropy) and thus in turn further drives feature alignment.

Influence of Metric for Measurement of Alignment. In RADA, as described in our main manuscript, to measure whether a target sample is a “well aligned” sample or not, we propose to simply use the entropy of domain discriminator to make decision. When the entropy of the domain discriminator is larger than a threshold \(\tau\), we define it as a “well aligned” sample, where \(\tau\) is a hyper-parameter (see ablation study in Figure 4 in our main manuscript).

Moreover, we have studied the influence of using different metric designs for the measurement. We compare several schemes. 1) \(H_C\): we use the entropy of the object classifier, i.e., \(H(C(F(x))))\), as metric to select “well-aligned” target samples. For a target sample, when the entropy of the object classification is smaller than a threshold (which indicates the sample is easy to transfer), we define it as a “well aligned” sample, where the threshold is a hyper-parameter obtained by grid search. \(p_{src}\): For a target sample, we use the predicted probability of being source domain, i.e., \(p_{src}\), as metric to select “well-aligned” target samples. When \(p_{src}\) is larger than a threshold (which indicates the sample is near to the source domain), we define it as a “well aligned” sample, where the threshold is a hyper-parameter obtained by grid search. \(H\ast p_{src}\): we use the product of the entropy of the domain discriminator \(H\) and the predicted probability of being source domain \(p_{src}\), as metric to select “well-aligned” target samples. When \(H\ast p_{src}\) is larger than a threshold, we define it as a “well aligned” sample, where the threshold is a hyper-parameter obtained by grid search. \(H\): our scheme which simply uses the entropy of the
domain discriminator \mathcal{H} as metric to select “well-aligned” target samples.

Table 1 shows the results. The schemes CDAN+RADA w/ \mathcal{H} and CDAN+RADA $w/ \mathcal{H} \ast p_{\text{src}}$ achieve very similar performance but significantly outperform the baseline and the predicted probability of being source domain samples would have small entropy value w.r.t. the domain discriminator, these target samples are very close to the source domain center but far away from the boundary of the domain discriminator, these target samples would have small entropy value w.r.t. the domain discriminator, which should be relabeled but may be missed when only the entropy is taken as the metric. We found CDAN+RADA w/ \mathcal{H} and CDAN+RADA $w/ \mathcal{H} \ast p_{\text{src}}$ achieve very similar performance, which may because the above cases are rare in practices. For simplicity, we use the entropy of the domain discriminator as the metric to select “well-aligned” samples by default, i.e., CDAN+RADA w/ \mathcal{H}.

5. Comparison with State-of-the-Arts (Complete Version)

For Table 4 (a)(c) and (d) in our main manuscript, to save space, we only present the average accuracy. Here, we also present the detailed results of each sub-setting in Table 2, Table 3, and Table 4, for Office-Home, Digit-Five, and DomainNet, respectively. We can observe that our CDAN+RADA achieves the state-of-the-art performance.

References

ImageNet. Note that we report the results of our baseline scheme CDAN [6] run by us where the original paper did not report (on the multi-source to single target adaptation settings). All experiments are based on ResNet-101 pre-trained on ImageNet.

Table 3: Performance (%) comparisons on Digit-Five with the state-of-the-art approaches for unsupervised domain adaptation (on the multi-source to single target adaptation settings). CovEL is taken as backbone for all these approaches. Note that we report the results of our baseline scheme CDAN [6] run by us where the original paper did not report results on this dataset.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Venue</th>
<th>mt</th>
<th>mm</th>
<th>sv</th>
<th>sy</th>
<th>up</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANN [4]</td>
<td>JMLR'16</td>
<td>97.9±0.83</td>
<td>70.8±0.94</td>
<td>68.5±0.85</td>
<td>87.3±0.68</td>
<td>93.4±0.79</td>
<td>83.6</td>
</tr>
<tr>
<td>IWAN [14]</td>
<td>ICML'19</td>
<td>98.2±0.13</td>
<td>74.2±0.22</td>
<td>72.9±0.56</td>
<td>88.9±0.54</td>
<td>95.8±0.51</td>
<td>86.0</td>
</tr>
<tr>
<td>MDAN [17]</td>
<td>NeurIPS'18</td>
<td>97.2±0.98</td>
<td>75.7±0.83</td>
<td>82.2±0.82</td>
<td>85.2±0.58</td>
<td>93.3±0.48</td>
<td>86.7</td>
</tr>
<tr>
<td>MCD [9]</td>
<td>CVPR'18</td>
<td>96.2±0.81</td>
<td>72.5±0.67</td>
<td>78.8±0.78</td>
<td>87.4±0.65</td>
<td>95.3±0.74</td>
<td>86.1</td>
</tr>
<tr>
<td>DCTN [12]</td>
<td>CVPR'18</td>
<td>99.4±0.06</td>
<td>76.2±0.51</td>
<td>86.8±0.31</td>
<td>94.4±0.58</td>
<td>86.4±0.54</td>
<td>88.6</td>
</tr>
<tr>
<td>M3SDA [7]</td>
<td>ICCV'19</td>
<td>98.4±0.68</td>
<td>72.8±1.13</td>
<td>81.3±0.86</td>
<td>89.5±0.56</td>
<td>96.1±0.81</td>
<td>87.6</td>
</tr>
<tr>
<td>CMSS [13]</td>
<td>ECCV'20</td>
<td>99.0±0.08</td>
<td>75.3±0.57</td>
<td>88.4±0.54</td>
<td>93.7±0.21</td>
<td>97.7±0.13</td>
<td>90.8</td>
</tr>
<tr>
<td>CDAN (Baseline) [6]</td>
<td>NeurIPS'18</td>
<td>99.1±0.28</td>
<td>71.3±0.23</td>
<td>85.2±0.21</td>
<td>90.1±0.37</td>
<td>97.8±0.22</td>
<td>88.7</td>
</tr>
<tr>
<td>CDAN+RADA</td>
<td>This work</td>
<td>99.5±0.17</td>
<td>78.9±0.26</td>
<td>90.5±0.59</td>
<td>98.4±0.52</td>
<td>98.7±0.23</td>
<td>93.2</td>
</tr>
</tbody>
</table>

Table 4: Performance (%) comparisons on DomainNet with the state-of-the-art approaches for unsupervised domain adaptation (on the multi-source to single target adaptation settings). All experiments are based on ResNet-101 pre-trained on ImageNet. Note that we report the results of our baseline scheme CDAN [6] run by us where the original paper did not report results on this dataset.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Venue</th>
<th>clipart</th>
<th>infograph</th>
<th>painting</th>
<th>quickdraw</th>
<th>real</th>
<th>sketch</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANN [4]</td>
<td>JMLR'16</td>
<td>45.5±0.59</td>
<td>13.1±0.72</td>
<td>37.0±0.69</td>
<td>13.2±0.77</td>
<td>48.9±0.65</td>
<td>31.8±0.62</td>
<td>32.6</td>
</tr>
<tr>
<td>DCTN [12]</td>
<td>CVPR'18</td>
<td>48.6±0.73</td>
<td>23.5±0.59</td>
<td>48.8±0.63</td>
<td>7.2±0.46</td>
<td>53.5±0.56</td>
<td>47.3±0.47</td>
<td>38.2</td>
</tr>
<tr>
<td>MCD [9]</td>
<td>CVPR'18</td>
<td>54.3±0.64</td>
<td>22.1±0.70</td>
<td>45.7±0.63</td>
<td>7.6±0.49</td>
<td>58.4±0.65</td>
<td>43.5±0.57</td>
<td>38.5</td>
</tr>
<tr>
<td>MDAN [17]</td>
<td>NeurIPS'18</td>
<td>60.3±0.41</td>
<td>25.0±0.43</td>
<td>50.3±0.36</td>
<td>8.2±1.92</td>
<td>61.5±0.46</td>
<td>51.3±0.58</td>
<td>42.8</td>
</tr>
<tr>
<td>M3SDA [7]</td>
<td>ICCV'19</td>
<td>58.6±0.53</td>
<td>26.0±0.89</td>
<td>52.3±0.55</td>
<td>6.3±0.58</td>
<td>62.7±0.51</td>
<td>49.5±0.76</td>
<td>42.6</td>
</tr>
<tr>
<td>FAR [5]</td>
<td>Arxiv'19</td>
<td>62.6±0.11</td>
<td>26.5±0.22</td>
<td>53.9±0.19</td>
<td>13.7±0.43</td>
<td>63.2±0.33</td>
<td>52.9±0.16</td>
<td>45.4</td>
</tr>
<tr>
<td>CMSS [13]</td>
<td>ECCV'20</td>
<td>64.2±0.18</td>
<td>28.0±0.20</td>
<td>53.6±0.39</td>
<td>16.0±0.12</td>
<td>63.4±0.21</td>
<td>53.8±0.35</td>
<td>46.5</td>
</tr>
<tr>
<td>CDAN (Baseline) [6]</td>
<td>NeurIPS'18</td>
<td>63.3±0.21</td>
<td>23.2±0.11</td>
<td>54.0±0.34</td>
<td>16.8±0.41</td>
<td>62.8±0.14</td>
<td>50.9±0.43</td>
<td>45.1</td>
</tr>
<tr>
<td>CDAN+RADA</td>
<td>This work</td>
<td>66.9±0.33</td>
<td>26.1±0.48</td>
<td>54.6±0.19</td>
<td>18.9±0.35</td>
<td>63.9±0.36</td>
<td>54.6±0.18</td>
<td>47.5</td>
</tr>
</tbody>
</table>