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We provide in this documents supporting materials that cannot fit into the manuscript due to page limit, including theoret-
ical analysis and more results of the 1-bit graph neural networks (GNNs) with the proposed meta aggregators.

Specifically, we begin by giving the propositions on how the proposed Adaptable Hybrid Neighborhood Aggregator (ANA)
can approximate various standard aggregators, followed by detailed theoretical proofs for each proposition. We then demon-
strate more results on the tasks of graph regression and multi-label node classification, and also provide additional results of
point cloud classification models.

1. Theoretical Proof
In this section, we provide the propositions and the corresponding theoretical proofs on how and why the proposed

Adaptable Hybrid Neighborhood Aggregator (ANA) can approximate various existing aggregation methods, such as max,
mean, and variance.

We start by showing the mathematical form of ANA again, based on the Log-Sum-Exp function in convex optimization:
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where A` denotes the 1-bit graph auto-encoder at layer `. degi is the in-degree of the node vi, and G = {V, E} is the graph
sample with edges (vi, vj) ∈ E . X `

j represents the feature vector of the neighboring node vj at layer `, whereas f(G,X )
denotes the obtained diffused aggregator.

Based on Eq. 1, we provide the following propositions and the corresponding proofs:

Proposition 1 (Mean). ANA, as defined in Eq. 1 as f(G,X ), can approximate the mean aggregator when A`(G)→ 0.

Proof. We prove Proposition 1 primarily based on the inequality of arithmetic and geometric, defined as:
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where the equality holds when x1 = x2 = · · · = xn.
By combining Eq. 1 and Eq. 2, we can derive the following inequation:
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The equality in Eq. 3 holds when A`(G)→ 0, i.e.,
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Eq. 4 is, in fact, the formulation of the mean aggregation. Thus, the proposed AN can approximate the mean aggregator.

Proposition 2 (Max). ANA defined in Eq. 1 can approximate the max aggregator when A`(G)→∞.

Proof. To prove Proposition 2, we begin by reformulating Eq. 1 into:
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Meanwhile, in our implementation, we keep A`(G) > 0 by using an absolute operation. As such, we can also obtain the
following inequation:
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By combining Eq. 5 and Eq. 6, we can obtain:
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When A`(G) → ∞, we have: 1
A`(G) log(degi) → 0. As such, by replacing 1

A`(G) log(degi) with 0 in Eq. 7, we can obtain
the following equation:
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By combing Eq. 8 and Eq. 5, and meanwhile replacing 1
A`(G) log(degi) in Eq. 5 with 0, we can derive the following equation:
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The right part of Eq. 9 is, in fact, the mathematical form of the max aggregation method, which indicates that the proposed
ANA can approximate the max aggregator when A`(G)→∞.

Proposition 3 (Variance). The variant of ANA, defined as h(G,X ) in Eq. 10, can approximate the variance aggregator when
A`(G)→ 0.
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Proof. By combining Eq. 1 and Eq. 10, we can obtain: h(G,X ) = f(G,X 2)− [f(G,X )]2. When A`(G)→ 0, we have:
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which is, in fact, the formulation of the variance aggregator.

The final form of the proposed ANA consists of one term in the form of Eq. 1 and also one term in the form of Eq. 10, with
the two corresponding graph auto-encoders A` as well as two learnable weighting factors that determine the portion of each
approximated aggregator. As such, the proposed ANA can potentially approximate various aggregators at the same time, and
generate a hybrid behavior of different aggregators by controlling the weighting factors.



2. Additional Results on Graph Regression Task
In this section, we provide additional results on the ZINC dataset for the task of graph regression. Specifically, we conduct
extensive ablation studies on ZINC to validate the effectiveness of the proposed method.

Implementation Details. We use the ZINC dataset for the task of graph regression. ZINC is a large-scale molecular dataset,
which aims to regress a specific molecular property. The node features in each molecular graph are the types of heavy atoms.
The corresponding edge features are the types of bonds between them. For the dataset splittings, we follow the standard
splitting protocol in [3]. Specifically, 10,000 molecular graphs in ZINC are used for training, 1,000 graphs are for validation,
and the remaining 1,000 ones are used for testing. In training, we use the Adam optimizer [6]. The batch size is set to 128.
For the learning rate, we set the initial value as 10−3, which is reduced by half if there is no improvement in the validation
loss after 10 epochs. The training process is stopped when the learning rate reaches 10−3. We measure the performance using
the mean absolute error (MAE) between the predicted property and the ground-truth one. Detailed network architectures that
are used in both the main manuscript and also this supplementary material are summarized in Tab. S1.

Table S1. Detailed network architectures for the task of graph regression on the ZINC dataset, where Architecture-ZINC-Main-GAT
and Architecture-ZINC-Main-GCN represent the architectures of the two models shown in Tab. 1 and Tab. 2 of the main manuscript.
Architecture-ZINC-Supp denotes the architectures that will be used for ablation studies in this supplement material.

Models Layers Attention Heads Hidden Output
Architecture-ZINC-Main-GAT 6 {8, 8, 8, 8} 18 144
Architecture-ZINC-Main-GCN 6 – 145 145

Architecture-ZINC-Supp-V1 5 {8, 8, 8} 18 144
Architecture-ZINC-Supp-V2 5 {8, 8, 8} 22 176
Architecture-ZINC-Supp-V3 8 {8, 8, 8, 8, 8, 8} 22 176

Ablation Studies. We show in Tab. S2 the regression results of the 1-bit GNNs with different network architectures. Specif-
ically, from left to right, Tab. S2 shows the results of the full-precision GNNs (Full Prec.), those of the 1-bit GNNs without
the proposed meta aggregators (Vanilla), and the results of the 1-bit GNNs with GNA and ANA. In the last line of Tab. S2, we
also provide the p-value of the paired t-test between the proposed meta aggregator and the vanilla one, so as to demonstrate
the statistically meaningful improvements by the proposed GNA and ANA. It is noticeable that both GNA and ANA achieve
performance superior to that of the vanilla one that depends on a single fixed and pre-defined aggregator.

Table S2. Results on the ZINC dataset for the task of graph-property regression, in terms of the mean absolute error (MAE). The detailed
network architectures of Architecture-ZINC-Supp-V1 and Architecture-ZINC-Supp-V2 are shown in Tab. S1.

Architecture Architecture-ZINC-Supp-V1 Architecture-ZINC-Supp-V2
Methods Full Prec. [9] Vanilla [5] GNA (Ours) ANA (Ours) Full Prec. [9] Vanilla [5] GNA (Ours) ANA (Ours)
Bit-width 32/32 1/1 1/1 1/1 32/32 1/1 1/1 1/1
Param Size 316.691KB 78.0156KB 78.2811KB 78.1226KB 466.816KB 111.164KB 111.488KB 111.294KB
Test MAE±SD 0.495±0.008 0.647±0.064 0.598±0.022 0.576±0.031 0.496±0.006 0.687±0.081 0.590±0.020 0.566±0.015
Train MAE±SD 0.372±0.017 0.588±0.065 0.536±0.024 0.471±0.035 0.362±0.013 0.629±0.083 0.523±0.022 0.444±0.024
p-value GNA vs. Vanilla: 6.316×10−4/ANA vs. Vanilla: 7.101×10−6 GNA vs. Vanilla: 3.869×10−7/ANA vs. Vanilla: 1.768×10−9

Furthermore, we provide in Tab. S3 the results of the 32-bit models with the proposed GNA and ANA, corresponding to
Tab. 2 of the main manuscript but with a different additional network architecture. The proposed meta aggregators, as shown
in Tab. S3, also achieve results superior to the state-of-the-art on the full-precision models.

Table S3. Results of the proposed GNA and ANA as well as other methods for 32-bit full-precision models on the ZINC dataset, in
terms of MAE. The detailed network architectures of the proposed methods are shown as Architecture-ZINC-Supp-V3 in Tab. S1. For the
architectures of the comparison methods [1, 4, 12, 8, 7, 9], we follow the network architecture designs in [3].

Methods Param Size Test MAE±SD Train MAE±SD Methods Param Size Test MAE±SD Train MAE±SD
GraphSage [4] 1973.99KB 0.398±0.002 0.081±0.009 RingGNN [2] 2059.70KB 0.353±0.019 0.236±0.019
GIN [12] 1990.43KB 0.526±0.051 0.444±0.039 MoNet [8] 1968.80KB 0.292±0.006 0.093±0.014
GCN [7] 1972.96KB 0.367±0.011 0.128±0.019 GAT [9] 2075.57KB 0.384±0.007 0.067±0.004
GNA (Ours) 858.809KB 0.295±0.013 0.088±0.016 ANA (Ours) 846.410KB 0.294±0.010 0.079±0.018



3. Additional Results on Multi-label Node Classification Task
In this section, we show more results on the PPI dataset for the task of multi-label node classification. Specifically, except
for the architecture mentioned in the main manuscript, we provide here additional results with three newly designed network
architectures.

Implementation Details. We use the protein-protein interaction (PPI) dataset for the task of multi-label node classifica-
tion, which contains biological graphs with the nodes labeled with various protein functions. In particular, each node can
concurrently have several labels. In training, the batch size is set to 1. The learning rate is 0.005 for each model. In total, we
optimize all the models for 500 epochs and report the corresponding results with the best validation accuracies. The detailed
network architectures are demonstrated in Tab. S4. Specifically, the 2nd row of Tab. S4 shows the architecture used in Tab. 3
of the main manuscript. The 3rd, 4th, and 5th rows, on the other hand, correspond to three newly-designed architectures that
are used in the following extensive ablation studies.

Table S4. Summary of the detailed network architectures for the task of multi-label node classification on the PPI dataset.

Models Layers Attention Heads Hidden

Architecture-PPI-Main 3 {4, 4, 6} 512

Architecture-PPI-Supp-V1 3 {4, 4, 6} 256

Architecture-PPI-Supp-V2 5 {2, 2, 2, 2, 2} 128

Architecture-PPI-Supp-V3 5 {2, 2, 2, 2, 2} 64

Ablation Studies. We perform here ablation studies on various network architectures for the task of multi-label node
classification. The corresponding results are shown in Tab. S5, where the results in the main manuscript are shown again,
such that we can observe how the performance changes with varying model sizes. The proposed GNA and ANA, as can
be seen from Tab. S5, delivers competitive results as compared with those of the full-precision-based approach across all
the four distinct architectures, yet maintaining a compact model size. Also, with a similar lightweight architecture, the 1-bit
GNNs with the proposed meta aggregators achieve superior performance to that of the model with a pre-defined aggregator,
demonstrating the effectiveness of the proposed learnable aggregation schemes.

Table S5. Results on the PPI dataset for the task of node classification, in terms of micro-averaged F1 score. Detailed network architectures
of Architecture-PPI-Main as well as Architecture-PPI-Supp-V1, V2, and V3 can be found in Tab. S4.

Architecture Architecture-PPI-Main Architecture-PPI-Supp-V1
Methods Bit-width Param Size F1 Score Bit-width Param Size F1 Score

Full Prec. [7] 32/32 43.7712MB 98.70 32/32 13.8884MB 98.67

Vanilla [5] 1/1 28.2560MB 92.68 1/1 10.0058MB 93.27
GNA (Ours) 1/1 28.2572MB 97.52 1/1 10.0064MB 96.79
ANA (Ours) 1/1 28.2565MB 97.71 1/1 10.0060MB 97.02

Architecture Architecture-PPI-Supp-V2 Architecture-PPI-Supp-V3
Methods Bit-width Param Size F1 Score Bit-width Param Size F1 Score

Full Prec. [7] 32/32 2.0311MB 98.21 32/32 0.64150MB 94.80

Vanilla [5] 1/1 1.2989MB 48.54 1/1 0.45702MB 45.88
GNA (Ours) 1/1 1.2994MB 53.52 1/1 0.45725MB 53.94
ANA (Ours) 1/1 1.2991MB 69.24 1/1 0.45711MB 72.29

4. Additional Results on 3D Object Recognition Task
We provide in this section more results on the ModelNet40 dataset for the task of 3D object classification. Specifically, we
devise two additional architectures and conduct extensive ablation studies accordingly.

Implementation Details. We follow the official dataset splitting protocol in [11, 10]. We set the learning rate as 0.001
and use a batch size of 16. We adopt the Adam optimizer [6] and all the models are optimized for 1000 epochs for full



convergence. The detailed architecture designs are summarized in Tab. S6, where the 2nd row corresponds to the architecture
used in Tab. 4 of the main manuscript. The 3rd and 4th rows, on the other hand, demonstrate the architectures that are used in
this supplement for extensive ablation studies.

Table S6. Summary of the detailed network architectures for the task of 3D object recognition on ModelNet40.

Models Layers Feature Map Channels MLPs
Architecture-ModelNet40-Main 6 [64, 64, 128, 512] [256, 40]
Architecture-ModelNet40-Supp-V1 6 [32, 32, 64, 128] [256, 40]
Architecture-ModelNet40-Supp-V2 8 [64, 64, 128, 256, 1024] [512, 256, 40]

Ablation Studies. We provide in Tab. S7 the results of different approaches with the two newly-designed architectures. The
quantitative results in Tab. S7 indicate that both of the proposed GNA and ANA can boost the performance of 1-bit GNNs by
a large margin across various network architectures, as compared with the vanilla fixed aggregation method [5].

Table S7. Results on the ModelNet40 dataset for the task of 3D object recognition, in terms of the overall accuracy (Acc) and the mean
class accuracy (mAcc). The details of Architecture-ModelNet40-Supp-V1 and Architecture-ModelNet40-Supp-V2 are shown in Tab. S6.

Architecture Architecture-ModelNet40-Supp-V1 Architecture-ModelNet40-Supp-V2
Methods Bit-width Param Size Acc mAcc Bit-width Param Size Acc mAcc

Full Prec. [10] 32/32 388.906KB 92.30% 89.43% 32/32 7068.66KB 93.03% 89.70%

Vanilla [5] 1/1 302.930KB 55.79% 46.28% 1/1 4742.20KB 81.12% 73.88%
GNA (Ours) 1/1 303.023KB 60.66% 49.74% 1/1 4742.39KB 81.65% 75.23%
ANA (Ours) 1/1 302.962KB 74.27% 65.96% 1/1 4742.33KB 84.81% 78.97%

More Qualitative Results. We also show in Fig. S1 more qualitative results of different approaches, by visualizing the
structures of the learned feature spaces. It can be observed that the proposed GNA and ANA can facilitate the 1-bit GNNs to
learn a more similar feature structure to that of the cumbersome full-precision ones.
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Figure S1. Comparative visualization results. Node color encodes the distance between the red dot and node of interest. All the visualized
features are extracted from the intermediate layer of the models.


