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1. Proof for effective degrees of freedom with ground truth (x) instead of another noisy realization
(ỹ) for Eq.(6)

We present a simple proof of the following approximation of 2σ2 · DF(h) to 2σ2 · DFGT (h) (Eq.(6)).
First, the relationship between optimism and effective degrees of freedom in Sec. 3 can be written (combining Eq.(4) and

Eq.(5) of the main paper) as:

2σ2 · DF(h) = E [L(ỹ,h(·))− L(y,h(·))] . (1)

Note that h(·) is an output of the given deep neural network (regardless of the input) where it is fitting to y.
Second, without loss of generality, we model ỹ = x+ ε̃ where ε̃ is a Gaussian random vector of test data with zero mean

and σ standard deviation. Then, we can expand E [L(ỹ,h(·))] as follows:

E [L(ỹ,h(·))] = E [L(x+ ε̃,h(·))]
= E [L(x,h(·))] + E

[
ε̃T ε̃

]
+ 2E

[
(x− h(·))T ε̃

]
= E [L(x,h(·))] + σ2.

(2)

Note that ε̃ is independent of x− h(·).
Finally, by incorporating Eq.(2) into the first term of Eq.(1) and approximating the asymptotic property by the expectation

operation to the deterministic values (between line 2 and 3 in Eq.(3)), we can obtain the following equation:

2σ2 · DF(h) = E
[
L(x,h(·))− L(y,h(·)) + σ2

]
≈ L(x,h(·))− L(y,h(·)) + σ2

= 2σ2 · DFGT (h).

(3)

2. More empirical analyses of the ‘zero crossing stopping criterion’ with DFGT and DFMC .
Fig. 1 shows more examples of DFGT and DFMC with the proposed ‘zero crossing stopping’ point (green dashed line)

(more examples of Fig.3-(c)). We argue that the optimal stopping point, where the ‘PSNR to x’ is at peak, is roughly aligned
with out zero crossing stopping criteria under different noise level and different texture frequency distribution of the images.
Fig.3-(c) uses ‘Lena’ (Fig. 1c), Fig. 1d uses Fig. 1a and Fig. 1e and 1f use Fig. 1b with different σ values. Note that the Image
‘7’ is more colorful than ‘Lena’ of Fig.3-(c) and Image ‘10’ of Fig. 1b. We observe that, in Image ‘7’, the loss deviated from
0 at earlier iteration (at iteration 1,250 in Fig. 1d) than in ‘Lena’ (at iteration 1,500 in Fig.3-(c)) and Image ‘10’ with same
sigma (at iteration 1,600 in Fig. 1f).

Comparing Fig. 1e and 1f, with different noise level on the same image, we observe that the DFMC with mild noise
estimates DFGT well (both are in the similar trajectory) for a slightly longer iteration with small noise (σ = 15, at iteration
1,850 in top figure of 1e) than when it does with larger noise (σ = 25, at iteration 1,600 in top figure of 1f). By our zero
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(a) Image ‘7’ used in Fig.1-(d) (b) Image ‘10’ used in Fig.1-(e) and (f) (c) ‘Lena’ used in Fig. 3-(c) of the main paper
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(d) Image ‘7’ in Kodak dataset with σ = 25
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(e) Image ‘10’ in Kodak dataset with σ = 15
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(f) Image ‘10’ in Kodak dataset σ = 25

Figure 1: More examples of zero-crossing stopping criterion (Fig.3-(c)). We observe that the optimal stopping point is affected by the
intensity of the noise. But still the ‘zero-crossing’ criterion finds the reasonable point to stop. The green dashed line indicates our proposed
stopping point.

crossing stopping criterion, it requires much more iterations to stop with σ = 15 (at 2,150 iteration in Fig. 1e) than with
σ = 25 (at 1,600 iteration in Fig. 1f). Note that the divergence term in Eq.(8) consists of σ and DFMC . By the zero crossing
stopping criterion, we try to monitor when DFMC starts diverging to −∞. But if the σ, is small, then the divergence term,
which multiplies the σ to the DFMC , becomes small thus the changes in DFMC are suppressed by the σ as shown in Eq.(8).
Since the ‘zero’ refers to the zero of Eq.(8), when σ is small, the iteration that we ‘estimate’ when the DFMC start diverging
would be delayed as shown in Fig. 1e). Whereas when σ becomes large, the changes in DFMC are amplified by the σ thus
the ‘zero stopping criterion’ senses precisely when DFMC start diverging.

Overall, our ‘zero-crossing stopping criterion’ (green dashed line in the figures) gives a solution quite close to the optimal
stopping points, where the ‘PSNR to x’ is at peak and even when it misses the optimal points, the denoised images show
excellent LPIPS and PSNR scores.

3. Dataset details
CSet9 consists of various sized color images and is used in [2].
Kodak image dataset is widely used in the literature [5, 6, 13]. It contains 24 full color images and the spatial size is

768× 512.
McMaster (McM) dataset consists of more saturated image than Kodak to represent digital color images for applications

like Color de-mosaicing.
CBSD68 and BSD68 are validation dataset of BSD dataset [1]. They are widely used to evaluate denoising algorithm [3,

7, 11–13].
Set12 is also one of the widely used gray image datasets in denoising literature [11, 13].

4. Network architecture
For a fair comparison to Self2Self, we use the same network architecture to Self2Self [8] with minor modifications;

replacing the “Dropout+PConv+LReLU” block with “Conv+Batchnorm+Softplus” since our method does not use dropout
and partial convolution (PConv). Note that Soltanayev et al. [9] show that the Softplus activation function makes Monte-Carlo
estimation more stable. We will release our code in a public repository soon.



5. Comparison to learning-based methods
Although it is not fair to compare our method to learning based methods (our method uses only one noisy observation

without training while they use a large set of noisy-clean image pairs), it is interesting to compare them as a reference.
Specifically, we compare our method with various learning-based methods including DnCNN [11], N2N [5], HQ-N2V [4]
and IRCNN [12] on CSet9 dataset with σ = 25 in Table 1. Note that we use the pre-trained weights of the authors’ code to
obtain the results of the prior work.

In the table, it is observed that when the size of training data increases, the PSNR increases. In addition, the performance
gap in SSIM between ours and other methods is smaller than PSNR as it is computed in the linear scale whereas PSNR uses
log scale. Our method exhibits best LPIPS among the all methods despite no training required. We argue that the learning-
based methods tend to lose texture details when denoise images while our method is able to preserve delicate textures when
it denoise images.

Method Trainset size PSNR (↑) SSIM (↑) LPIPS (↓)

DnCNN [11] 432 31.17 0.955 0.157
IRCNN [12] 5k 31.72 0.958 0.144

N2N [5] 50k 31.92 0.960 0.137
HQ-N2V [4] 50k 31.98 0.960 0.134

Ours N/A 31.54 0.953 0.107
Ours* N/A 31.88 0.960 0.118

Table 1: Comparison to learning-based method on CSet9 dataset (σ = 25). (↑): higher the better, (↓): lower the better. The best values
are in bold and second best values are underlined.

6. More qualitative results
Fig. 2 shows examples of the results of BSD68 and Set12 datasets. Fig. 3 shows examples of the results of CBSD68, Set9

and Kodak dataset. In the enlarged portion of the images in Fig. 2 and Fig. 3, it is observed that ours restores the texture
better than the others while suppresses the noise (e.g., decent PSNR), which results in much better LPIPS score among the
methods with decent PSNR. We argue that our method tries to find better trade-off between PSNR and LPIPS scores.

Specifically, in Fig. 2, all methods except ours fail to preserve wrinkles in elephant. It is partly because other denoising
methods have focused on creating an image as smooth as possible thus have high PSNR. In contrast, our method preserves
the details as it aims to estimatedly fit to clean images.

In Fig. 3, the wrinkle in the face (the first row) and stripe pattern in the hat (the second row) shows that our method
preserves the high frequency textural details while suppresses noise. The rough part of the marble (third row of Fig. 3) is
challenging to be recovered by other methods as they tend to oversmooth textures; S2S [8] and CBM3D [2] smooth out this
regions (remove some textures). DIP [10] preserves the textures at the expense of resulting in many noisy colored pixels (i.e.,
pixels colored other than gold). Ours preserves textures relatively better than other methods while suppresses the noises (i.e.,
not much of pixel colored other than gold).
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Figure 3: Qualitative comparison on color images. The best performance is in bold. Second best is underlined.
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