
Supplementary Material
Divide and Conquer for Single-frame Temporal Action Localization

Chen Ju1, Peisen Zhao1, Siheng Chen1, Ya Zhang1B, Yanfeng Wang1, Qi Tian2

1Cooperative Medianet Innovation Center, Shanghai Jiao Tong University 2Huawei Cloud & AI
{ju chen, pszhao, sihengc, ya zhang, wangyanfeng}@sjtu.edu.cn, tian.qi1@huawei.com

1. Detailed Network Architectures
In our framework, the seedframe detector, the location

estimator, the gate-approximation network in the mask gen-
erator, and the classifier are four key components. Table 1
details their network architectures. For simplicity, we de-
note a temporal convolutional layer as conv(hk, hf ), where
hk and hf are the kernel size and the filter number of the
convolutional layer. Similarly, a fully connected layer is
denoted as fc(fa, fb), where fa and fb are the input dimen-
sion and the output dimension. A dropout layer is denoted
as drop(α), where α is the dropout rate.

For the seedframe detector, the input is the feature X ∈
RT×D of the whole video, and the output is the estimated
seedframe heatmap k̂ ∈ RT , where T and D are the video
length and the feature dimension, respectively.

For the location estimator, the input is the feature Xs ∈
RTs×D of the video clip, and the output is the estimated
proposal v = (∆p+ p, ℓ) ∈ R2, where Ts, p, ∆p, and ℓ are
the length of video clips, the timestamp of the seedframe,
the center offset, and the action length, respectively.

For the gate-approximation network in the mask gener-
ator, the input is the estimated proposal v ∈ R2, and the
output is an approximate gate-shaped mask m̂ ∈ [0, 1]Ts .

For the classifier, the input is the clip-level foreground
feature xfg ∈ RD (the clip-level background feature xbg ∈
RD), and the output is the clip-level foreground classifica-
tion probability ŷfg ∈ RC+1 (the clip-level background-
aware probability ŷbg ∈ RC+1), where C denotes the total
number of action categories and the additional one denotes
the background category.

2. More Implementation Details

Our method is implemented with PyTorch [6]. Following
previous literature [3, 4, 5], we split each untrimmed video
into 16-frame snippets (In this paper, we use a frame to in-
dicate such a snippet for simplicity), and use the pre-trained
feature extractor without fine-tuning for fair comparison. To
deal with the large variation in the video length, we sample
T consecutive frames from each video during training. And

Table 1. Detailed network architectures. conv(hk, hf ) is a tempo-
ral convolutional layer, where hk and hf are the kernel size and the
filter number, respectively. fc(fa, fb) is a fully connected layer,
where fa and fb denote the input dimension and the output dimen-
sion. drop(α) is a dropout layer with the dropout rate of α. And
‘product’ denotes the product operation.

Input Layer Activation Output
Seedframe Detector

X (T ×D) conv(3, 1024) ReLU X1 (T × 1024)
X1 conv(3, 512) ReLU X2 (T × 512)
X2 conv(3, 256) ReLU X3 (T × 256)
X3 conv(3, 64) ReLU X4 (T × 64)
X4 conv(3, 1) Sigmoid k̂ (T )

Location Estimator
Xs (Ts ×D) fc(Ts, Ts) ReLU Xs1 (Ts ×D)

Xs1 drop(0.5) - Xs2 (Ts ×D)
Xs2 fc(Ts, 1) ReLU Xs3 (1×D)
Xs3 conv(3, 512) ReLU Xs4 (1× 512)
Xs4 conv(3, 64) ReLU Xs5 (1× 64)
Xs5 conv(3, 8) ReLU Xs6 (1× 8)
Xs6 conv(3, 1) Sigmoid Xs7 (1× 1)
Xs6 conv(3, 1) Tanh Xs8 (1× 1)

Xs7 Ts product - ℓ (1)
Xs8 Ts/16 product - ∆p (1)

Gate-Approximation Network
v (2) fc(2, 32) ReLU v1 (32)
v1 fc(32, 64) ReLU v2 (64)
v2 fc(64, Ts) ReLU v3 (Ts)
v3 fc(Ts, Ts) ReLU v4 (Ts)
v4 fc(Ts, Ts) Sigmoid m̂ (Ts)

Classifier
xfg (D) fc(D,D) ReLU xfg1 (D)
xfg1 drop(0.7) - xfg2 (D)
xfg2 fc(D,C + 1) Sigmoid ŷfg (C + 1)

T is set to 2500, 360, and 128 for THUMOS14, BEOID,
and GTEA datasets. During testing, we feed all the video
frames to the proposed framework. For all datasets, we uti-
lize Adam optimizer with a learning rate of 10−4 to train
the seedframe detector. To reduce the high-frequency noise
in the estimated seedframe heatmap, we use the Savitzky-
Golay filter for smoothing. In the video clip generation, we



center time

length

0

0.5

1

probability

Gaussian-shaped mask
center time

length

0

0.5

1

probability

Gate-shaped mask

Figure 1. Detailed implementation of replacing the Gate-shaped
mask with a Gaussian-shaped mask.

rescale the length of video clips to Ts frames. Ts is set to
128, 64, and 32 on THUMOS14, BEOID, and GTEA. To
train the location estimator and the classifier, we use Adam
with a learning rate of 10−4 for all datasets.

In the mask generator, we propose two solutions to han-
dle the non-differentiable issue. One is to replace the Gate-
shaped mask with a Gaussian-shaped mask. Figure 1 illus-
trates its detailed implementation. We set the action center
of the proposal as the center of the Gaussian-shaped mask,
and set the action length of the proposal as the full width at
half maximum (FWHM) of the Gaussian-shaped mask.

The other is to approximate Eq. (3) in the main paper
using a gate-approximation network. We first simulate 0.1
million proposals, each indicating the action center and the
action length. The proposal simulation is achieved by uni-
formly sampling two-dimensional vector sets. And the ac-
tion center and the action length are both fixed in the range
of 0 to Ts. Then, for each proposal, we calculate the cor-
responding gate-shaped temporal mask as the ground-truth
label. Finally, using Adam optimizer with a learning rate of
10−5, we optimize the gate-approximation network to en-
sure that it accurately transforms the proposal into the Ts-
dimensional approximate gate-shaped mask.

3. More Experimental Results
In this section, we carry out more ablation experiments

on THUMOS14 dataset for further analysis.
Impact of the threshold θ. In the video clip generation,

we mine the seedframes of action instances through the fil-
tering threshold θ and local maxima. A larger threshold will
generate fewer seedframes, thus omitting some action in-
stances. While a smaller threshold will produce more seed-
frames, thus over-segmenting action instances. Figure 2 il-
lustrates the impact. Our method achieves the best perfor-
mance using the threshold 0.15. The performance fluctua-
tions are small when θ is in the range of 0.05 to 0.25.

Impact of the hyperparameter β. The hyperparameter
β is used to balance the foreground classification loss and
the background-aware loss. Figure 3 demonstrates the re-
sults using different values of β. When β is in the range
of 1 to 1.75, our method shows good robustness. However,
when β is smaller than 1, the excessive background-aware

0 0.05 0.1 0.15 0.2 0.25 0.3 0.4
30.9

31.9

32.9

33.9

34.7

m
A

P@
0.

5 
(%

)

threshold θ

Figure 2. Impact of the filtering threshold θ.

0.5 1 1.25 1.5 1.75 2 3
27.5

29.5

31.5

33.5

35.0

m
A

P@
0.

5 
(%

)

hyperparameter β

Figure 3. Impact of the trade-off hyperparameter β.

Table 2. Experiments on whether to freeze the weights of the gate-
approximation network in the location estimation stage. AVG de-
notes the average mAP at IoU thresholds 0.1:0.1:0.7.

Freeze
Weights

mAP@IoU
AVG

0.3 0.5 0.7

no 56.0 31.3 10.2 42.1
yes 58.1 34.5 11.9 44.3

loss misleads the model to identify most video regions as
background, causing a rapid drop in performance. Simi-
larly, when β is larger than 2, the excessive foreground clas-
sification loss causes many video regions to be identified as
actions, also resulting in the performance degradation.

Whether to freeze the gate-approximation network.
In the mask generator, we adopt a learnable network to ap-
proximate the gate-shaped mask. The gate-approximation
network is first trained independently of the location estima-
tion stage, then its weights are frozen to ensure the accurate
and robust transformation during the end-to-end training of
the location estimation stage. Table 2 reveals the necessity
of freezing the weights. If we do not freeze the weights
of the gate-approximation network, but jointly optimize the
network in the location estimation stage, the performance



Table 3. Comparison of simulated single-frame supervision. AVG
denotes the average mAP at IoU thresholds 0.1:0.1:0.7.

Method Distribution
mAP@IoU

AVG
0.3 0.5 0.7

SF-Net [3]
Manual 53.3 28.8 9.7 40.6
Uniform 52.0 30.2 11.8 40.5
Gaussian 47.4 26.2 9.1 36.7

Ours
Manual 58.1 34.5 11.9 44.3
Uniform 55.6 32.3 12.3 42.9
Gaussian 58.2 35.9 12.8 44.8

Table 4. Comparison with the state-of-the-art methods on Activi-
tyNet1.2. Our method surpasses the competitor. AVG denotes the
average mAP at IoU thresholds 0.5:0.05:0.95.

Supervision Method
mAP@IoU

AVG
0.5 0.7 0.9

Full
CDC [8] 45.3 - - 23.8
SSN [11] 41.3 30.4 13.2 28.3

Weak
Video-level

UNet [10] 7.4 3.9 1.2 3.6
AutoLoc [9] 27.3 17.5 6.8 16.0
WTALC [7] 37.0 14.6 - 18.0
CMCS [2] 36.8 - - 22.4
3C-Net [4] 37.2 23.7 9.2 21.7

Weak
Single-frame

SF-Net [3] 37.8 24.6 10.3 22.8
Ours 40.5 26.4 10.7 24.5

will drop 2.2% average mAP. In this case, the network grad-
ually loses the temporal smoothness constraints, and assigns
unequal aggregation weights to action-related frames, re-
sulting in the performance degradation.

Comparison of simulated single-frame labels. In addi-
tion to manually annotated single-frame labels, SF-Net [3]
also provides two types of simulated single-frame labels,
which are sampled from the ground-truth boundary labels
via a uniform distribution and a Gaussian distribution. Ta-
ble 3 compares our method with SF-Net using three types of
single-frame labels. No matter what type of single-frame la-
bels is used, our method surpasses the competitor, revealing
the effectiveness and robustness. Notably, the single-frame
labels generated by the Gaussian distribution are quite unre-
alistic and expensive, since they require annotators to have
some knowledge of the action boundaries.

4. Comparison on ActivityNet Dataset
To verify the effectiveness of single-frame supervision

on more diverse datasets, SF-Net [3] also randomly simu-
lates single-frame annotations on ActivityNet1.2 [1]. This
dataset contains 9682 videos belonging to 100 action cat-
egories, which are divided into 4819 videos for training,
2383 videos for validating, and 2480 videos for testing.
It is a large-scale dataset, and each video contains an av-
erage of 1.5 action instances. The conventional choice is

5
0

1

5
0

1
(5, 21) (5, 21)

31
0

1

31
0

1
(31, 3) (31, 3)

29
0

1

29
0

1
(29, 55) (29, 55)

53
0

1

53
0

1
(52.7, 9.8)(52.7, 9.8)

18
0

1

18
0

1
(18.3, 16.4) (18.3, 16.4)

Figure 4. Qualitative results of the gate-approximation network.
The left column denotes the output masks of the network, and the
right column denotes the ground-truth masks. ‘(ξ, ζ)’ denotes an
action proposal, where ξ and ζ are the action center and the action
length. For various types of proposals, the output masks of the
network are almost the same as ground-truth gate-shaped masks,
indicating the effectiveness of the gate-approximation network.

to train on the training set and evaluate on the validation
set. Table 4 summarizes the comparison results. Following
standard protocols, we use the mAP at different thresholds
(0.5:0.05:0.95) for evaluation. It can be observed that our
method outperforms the competitor [3] at all IoU thresh-
olds, and follows the fully-supervised methods with the
least gap, revealing the superiority of our method.

5. Qualitative Results
Figure 4 presents some qualitative results to intuitively

demonstrate the superiority of the gate-approximation net-
work in the mask generator. In these five cases, there are
extremely long actions and extremely short actions. For var-



ious types of input proposals, the output masks of the gate-
approximation network are almost the same as ground-truth
gate-shaped masks, revealing the robustness and effective-
ness of the gate-approximation network.

6. Future Work
This paper proposes a novel two-stage framework with

the spirit of divide and conquer for single-frame temporal
action localization. And there are several improvements left
for future work. For example, dealing with two key chal-
lenges in real-world scenarios: actions with significantly
varying timescales and overlapping actions.

To alleviate varying timescales, in the instance counting
stage, we rescale (normalize) the length of video clips so
that the extreme short/long clip is expanded/compressed.
But the proportion of action instances may still vary in dif-
ferent video clips. In the location estimation stage, feature
pyramids can be explored to make it easier to estimate the
action length. On the other hand, overlapping actions cause
multiple seedframe peaks to approach each other, making
it unstable and difficult to pick local maxima. One feasible
solution is to sample multiple sets of seedframes as multi-
ple hypotheses, then generate action proposals respectively,
and finally filter or sort these proposals.

References
[1] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In Proceed-
ings of the ieee conference on computer vision and pattern
recognition (CVPR), pages 961–970, 2015.

[2] Daochang Liu, Tingting Jiang, and Yizhou Wang. Com-
pleteness modeling and context separation for weakly su-
pervised temporal action localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1298–1307, 2019.

[3] Fan Ma, Linchao Zhu, Yi Yang, Shengxin Zha, Gourab
Kundu, Matt Feiszli, and Zheng Shou. Sf-net: Single-frame
supervision for temporal action localization. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 420–437, 2020.

[4] Sanath Narayan, Hisham Cholakkal, Fahad Shahbaz Khan,
and Ling Shao. 3c-net: Category count and center loss for
weakly-supervised action localization. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
pages 8679–8687, 2019.

[5] Phuc Xuan Nguyen, Deva Ramanan, and Charless C
Fowlkes. Weakly-supervised action localization with back-
ground modeling. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 5502–5511,
2019.

[6] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In Advances in neural information
processing systems (NIPS), 2017.

[7] Sujoy Paul, Sourya Roy, and Amit K Roy-Chowdhury. W-
talc: Weakly-supervised temporal activity localization and
classification. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 563–579, 2018.

[8] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki
Miyazawa, and Shih-Fu Chang. Cdc: Convolutional-de-
convolutional networks for precise temporal action local-
ization in untrimmed videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5734–5743, 2017.

[9] Zheng Shou, Hang Gao, Lei Zhang, Kazuyuki Miyazawa,
and Shih-Fu Chang. Autoloc: Weakly-supervised tempo-
ral action localization in untrimmed videos. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 154–171, 2018.

[10] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool.
Untrimmednets for weakly supervised action recognition
and detection. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), pages
4325–4334, 2017.

[11] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xi-
aoou Tang, and Dahua Lin. Temporal action detection with
structured segment networks. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages
2914–2923, 2017.


