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Abstract

The goal of the alignment problem is to align a (given)
point cloud 𝑃 = {𝑝1, · · · , 𝑝𝑛} to another (observed) point
cloud 𝑄 = {𝑞1, · · · , 𝑞𝑛}. That is, to compute a rotation
matrix 𝑅 ∈ R3×3 and a translation vector 𝑡 ∈ R3 that
minimize the sum of paired distances between every trans-
formed point 𝑅𝑝𝑖 − 𝑡, to its corresponding point 𝑞𝑖, over
every 𝑖 ∈ {1, · · · , 𝑛}. A harder version is the registra-
tion problem, where the correspondence is unknown, and
the minimum is also over all possible correspondence func-
tions from 𝑃 to 𝑄. Algorithms such as the Iterative Closest
Point (ICP) and its variants were suggested for these prob-
lems, but none yield a provable non-trivial approximation
for the global optimum.

We prove that there always exists a “witness” set of 3
pairs in 𝑃 ×𝑄 that, via novel alignment algorithm, defines
a constant factor approximation (in the worst case) to this
global optimum. We then provide algorithms that recover
this witness set and yield the first provable constant fac-
tor approximation for the: (i) alignment problem in 𝑂(𝑛)
expected time, and (ii) registration problem in polynomial
time. Such small witness sets exist for many variants in-
cluding points in 𝑑-dimensional space, outlier-resistant cost
functions, and different correspondence types.

Extensive experimental results on real and synthetic
datasets show that, in practice, our approximation con-
stants are close to 1 and our error is up to x10 times smaller
than state-of-the-art algorithms.

1. Introduction
Consider the set 𝑃 of known 3D landmarks mounted on a

car, and the set 𝑄 of the same 3D landmarks as currently ob-
served via an external 3D camera, say, a few seconds later.
Suppose that we wish to compute the new car’s position and
orientation, relative to its starting point. These can be de-
duced by recovering the rigid transformation (rotation and
translation) that align 𝑃 to 𝑄. In this alignment problem,
we assume that the correspondence (matching) between ev-

Figure 1: Registration visualization using the Armadillo
model with 𝑛 = 1000 points and 𝑘 = 20% outliers.
(Left) ICP(𝑃,𝑄), (middle) P-ICP(𝑃,𝑄, cost, 𝛾), (right)
P-ICP-Refined(𝑃,𝑄, 𝛾, cost). cost is the SSD with a
threshold M-estimator and 𝛾 = 3000; see Section 3.2.

ery point in 𝑃 to 𝑄 is known. When this matching is un-
known, and needs to be computed, the problem is known
as the registration problem. It is a fundamental problem in
computer vision [33, 28, 40, 47] with many applications in
robotics [27, 37, 13] and autonomous driving [51].

Alignment. In the alignment problem the input consists of
two ordered sets 𝑃 = {𝑝1, · · · , 𝑝𝑛} and 𝑄 = {𝑞1, · · · , 𝑞𝑛}
in R𝑑, where 𝑑 = 3 in the previous application, and the goal
is to minimize

𝑛∑︁
𝑖=1

𝐷(𝑅𝑝𝑖 − 𝑡, 𝑞𝑖), (1)

over every alignment (rigid transformation) (𝑅, 𝑡) consist-
ing of a rotation matrix 𝑅 ∈ R𝑑×𝑑 (an orthogonal matrix
whose determinant is 1), and a translation vector 𝑡 ∈ R𝑑,
and where 𝐷(𝑝, 𝑞) = ‖𝑝− 𝑞‖ is the Euclidean (ℓ2) distance
between a pair of points 𝑝, 𝑞 ∈ R𝑑. Here, the sum is over
the distance between every point 𝑝𝑖 ∈ 𝑃 to its correspond-
ing point 𝑞𝑖 ∈ 𝑄. This correspondence may be obtained
using some auxiliary information, like point-wise descrip-
tors e.g., SIFT [25], visual tracking of points [36, 44], or
the use of predefined shapes and features [32, 39].

To our knowledge, the only provable approximation to
the optimal global minimum of (1) is for its variant where
𝐷(𝑝, 𝑞) is replaced by ℓ(𝐷(𝑝, 𝑞)) = ‖𝑝− 𝑞‖2, i.e., squared
Euclidean distance. In this special case, the optimal solution
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Table 1: Example contributions. Variants of the problems (1)–(3) that we approximate in this paper, either using: (i) Theo-
rem 3 (known correspondence), or (ii) Theorem 5 (unknown correspondence). Let 𝑃 = {𝑝1, · · · , 𝑝𝑛} and 𝑄 = {𝑞1, · · · , 𝑞𝑛}
be two sets of points in R𝑑, let 𝑧, 𝑟, 𝑇 > 0, and let 𝑤 = 𝑑|

1
𝑧−

1
2 |. Formally, we wish to minimize cost(𝑃,𝑄, (𝑅, 𝑡)) =

𝑓 (ℓ (𝐷 (𝑅𝑝1 − 𝑡, 𝑞1)) , · · · , ℓ (𝐷 (𝑅𝑝𝑛 − 𝑡, 𝑞𝑛))) for functions 𝐷 : R𝑑 × R𝑑 → [0,∞), ℓ : [0,∞) → [0,∞) and
𝑓 : R𝑛 → [0,∞) as in Definition 2. Rows marked with a ⋆ can also be approximated in linear time with high proba-
bility and bigger approximation factors, using Theorem 4.

Use case 𝑓(𝑣) ℓ(𝑥) 𝐷(𝑝, 𝑞)
Optimization Problem
cost(𝑃,𝑄, (𝑅, 𝑡))

Approximation
Factor

Matching 𝑚
Necessary as

input?
Sum of distances ⋆ ‖𝑣‖1 𝑥 ‖𝑝− 𝑞‖2

∑︀𝑛
𝑖=1

⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚(𝑖)

⃦⃦
(1 +

√
2)𝑑 No

Sum of squared distances ⋆ ‖𝑣‖1 𝑥2 ‖𝑝− 𝑞‖2
∑︀𝑛

𝑖=1

⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚(𝑖)

⃦⃦2
(1 +

√
2)2𝑑 No

Sum of distances with
noisy data using M-estimators

‖𝑣‖1 min {𝑥, 𝑇} ‖𝑝− 𝑞‖2
∑︀𝑛

𝑖=1 min
{︀⃦⃦

𝑅𝑝𝑖 − 𝑡− 𝑞𝑚(𝑖)

⃦⃦
, 𝑇

}︀
(1 +

√
2)𝑑 No

Sum of ℓ𝑧 distances to the
power of 𝑟 ⋆

‖𝑣‖1 𝑥𝑟 ‖𝑝− 𝑞‖𝑧
∑︀𝑛

𝑖=1

⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚(𝑖)

⃦⃦𝑟

𝑧
𝑤𝑟(1 +

√
2)𝑑𝑟 No

Sum of ℓ𝑧 distances to the
power of 𝑟 with 𝑘 ≥ 1 outliers

Sum of the 𝑛− 𝑘
smallest entries of 𝑣

𝑥𝑟 ‖𝑝− 𝑞‖𝑧

∑︁
𝑖∈𝑆⊂{1,··· ,𝑛},|𝑆|=𝑛−𝑘

⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚(𝑖)

⃦⃦𝑟

𝑧 𝑤𝑟(1 +
√
2)𝑑𝑟 Yes

is unique and easy to compute: 𝑡 is simply the vector con-
necting the two centers of mass of 𝑃 and 𝑄, and 𝑅 ∈ R𝑑×𝑑

can be computed using Singular Value Decomposition [14]
as described in [22]. There has been a long line of work
to handle this problem also in the presence of outliers; see
e.g., [6, 52, 49]. Many of those works are RANSAC-type
algorithms [12]. This paper gives the first provable non-
trivial approximation algorithm for (1), while also handling
an even wider range of functions.

Registration. The registration problem does not assume
the correspondence between 𝑃 and 𝑄 is given, that is, we do
not know which point in 𝑄 matches 𝑝𝑖 ∈ 𝑃 . Therefore, be-
sides the rigid motion, the correspondence needs also to be
extracted based solely on the two given point clouds, result-
ing in a much more complex problem with a large number
of local minima; see Fig. 1. Formally, it aims to minimize

𝑛∑︁
𝑖=1

ℓ
(︀
𝐷(𝑅𝑝𝑖 − 𝑡, 𝑞𝑚(𝑖))

)︀
, (2)

over every alignment (𝑅, 𝑡) and correspondence function
𝑚 : {1, . . . , 𝑛} → {1, . . . , 𝑛}; see recent survey [41].
Here, a natural selection for ℓ is ℓ(𝑥) = 𝑥2. The set 𝑄
here is assumed to be of size 𝑛 for simplicity only, but can
be of any different size.

Unlike (1), we do not know a provable approximation
to (2), even for ℓ(𝑥) = 𝑥2. The most commonly used solu-
tion for this problem, both in academy and industry, is the
Iterative Closest Point (ICP) heuristic [4]. Our main contri-
bution is a provable alternative to the ICP which approxi-
mates the global optimum of this harder problem.

More complex cost functions. When dealing with real-
world data, noise and outliers are inevitable. One may thus
consider alternative cost functions, rather than the sum of
squared distances (SSD) above, due to its sensitivity to such

corrupted input. A natural more general cost function would
be to pick e.g., ℓ(𝑥) = 𝑥𝑟 for 𝑟 > 0, which is more robust to
noise when 𝑟 ∈ (0, 1]. Alternatively, for handling outliers,
a more suitable function would be ℓ(𝑥) = min {𝑥, 𝑇} for
some threshold 𝑇 > 0, or the common Tuckey or Huber
losses, or any other robust statistics function [17].

To completely ignore these (unknown) faulty subsets of
some paired data we may consider solving

min
(𝑅,𝑡)

∑︁
𝑖∈𝑆⊂{1,··· ,𝑛},|𝑆|=𝑛−𝑘

ℓ
(︀
𝐷(𝑅𝑝𝑖 − 𝑡, 𝑞𝑚(𝑖))

)︀
, (3)

where 𝑘 ≤ 𝑛 is the number of outliers to ignore.
In this paper we suggest a general framework for prov-

ably approximating the global minimum of the alignment
and registration problems, including formulations (1)–(3).

1.1. Related Work

The most common method for solving the registration
problem in (2), for ℓ(𝑥) = 𝑥2, is the ICP algorithm [7, 4].
The ICP is a local optimization technique, which alter-
nates, until convergence, between solving the correspon-
dence problem and the rigid alignment problem. Over the
years, many variants of the ICP algorithm have been sug-
gested; see survey in [38] and references therein. However,
these methods usually converge to local and not global min-
imum if not initialized properly.

Estimation maximization approaches. To overcome
the ICP limitations, probabilistic methods have been sug-
gested, making use of GMMs, treating one point set as the
GMM centroids, and the other as data points [18, 46, 8, 26,
29, 16, 5]. This category also includes the widely used Co-
herent Point Drift (CPD) method [31].

Learning-based approaches. Learning dedicated fea-
tures for this task was shown to enhance the output align-
ment [45]. In [3], a deep learning model was combined



with a modified version of the known Lukas & Kanade al-
gorithm. Recently, an unsupervised deep learning based ap-
proach was proposed in [15].

Geometric and alternative approaches. Some works,
e.g., [1, 34, 2], utilize techniques from computational ge-
ometry to devise a solution. [1, 34] also provide provable
guarantees. Other results use a Branch and Bound scheme
to compute the global minimum [35, 10, 50]. The work [30]
tackles the problem using a smart indexing data organiza-
tion. Some results use the Fourier domain [28], and use cor-
relation of kernel density estimates (KDE) [42]. However,
the above methods scale poorly as the input size increases.

Common limitations. The previously mentioned meth-
ods share similar properties and either (i) support only the
simple sum of squared distances function or 𝑑 = 3, (ii)
they converge to a local minima due to bad initialization,
(iii) give optimality guarantees, if any, only on a sub-task of
the registration pipeline, and lack such guarantees relative
to the global optimum of the registration problem, (iv) their
convergence time is impractical or depends on the data it-
self, or (v) require a lot of training data. To our knowledge,
no provable approximation algorithms have been suggested
for tackling (2), even for ℓ(𝑥) = 𝑥.

Coresets. Some works suggest compressing the input
point clouds into a small subset with a provable bound on
the compression error. Existing and inefficient algorithms
can thus run much faster. An error-less compression was
suggested in [32] for the alignment problem; see more ex-
amples in [20]. While our method draw inspiration from the
approximation techniques used in developing coresets, our
paper suggests a “witness set”, and not a coreset.

1.2. Our Contribution

(i) A novel alignment algorithm that given a specific set of 𝑑
points from 𝑃 and corresponding 𝑑 points from 𝑄, which
we call a witness set, yields a provable constant factor ap-
proximation. We also prove that every input pair of point
clouds in R𝑑 admits such a witness set for all the versions
of the alignment and registration problem, including prob-
lems (1)–(3); see Theorem 1.

(ii) RANSAC-style algorithms for recovering such witness sets
for both the alignment and registration problems and their
variants e.g., (1)–(3). Extensive experimental results on
synthetic and real-world datasets demonstrate the effective-
ness and accuracy of our suggested algorithms, as compared
to state of the art methods; see Section 3. The results show
that the approximation factor obtained in practice is much
smaller than the theoretically predicted factor. We provide
full open-source code for our algorithms [21].

(iii) A formal proof that running our suggested algorithms for
a polynomial number of iterations yields a provable con-
stant factor approximation for the alignment and registra-

Figure 2: (Left): Two corresponding sets of points 𝑃 (in
blue) and 𝑄 (in red), where 𝑝1 and 𝑞1 have the small-
est distance among all pairs. (Right): Translating 𝑃 by
𝑡 = 𝑝1 − 𝑞1 (i.e., 𝑝1 now intersects 𝑞1). By the triangle
inequality, each distance ‖𝑝𝑖 − 𝑡− 𝑞𝑖‖ (green lines) is at
most 2 · ‖𝑝𝑖 − 𝑞𝑖‖ (blue lines).

Figure 3: (Top left): Two sets of corresponding points 𝑃 (in
blue) and 𝑄 (in red). (Top right): Rotating 𝑃 such that some
𝑝1 ∈ 𝑃 aligns with its corresponding 𝑞1 ∈ 𝑄. (Bottom left):
Projecting the rotated set 𝑃 and the set 𝑄 onto the plane
orthogonal to 𝑞1. (Bottom right): Rotating the projected
𝑃 such that one of its points aligns with its corresponding
point from 𝑄. Observe that the initial aligned pair of points
(𝑝1, 𝑞1) are not affected by the proceeding steps.

tion problems, including sum of distances to the power of
𝑟 > 0 and sum of M-estimators; see Theorems 3 and 5,
Table 1, and Algorithms 2 and 4.

(iv) A probabilistic linear time algorithm for solving the align-
ment problem, which also supports e.g., sum of M-
estimators; see Algorithm 3 and Theorem 4.

1.3. Novel Technique: Witness Set

We now introduce our novel technique. We first assume
the correspondence between 𝑃 and 𝑄 is given. We then
generalize to the case with unknown correspondence.

Our main technical result is that for every corre-
sponding ordered point sets 𝑃 = {𝑝1, · · · , 𝑝𝑛} , 𝑄 =
{𝑞1, · · · , 𝑞𝑛} ⊆ R𝑑, every cost function cost which satisfies
some set of properties (see Definition 2), and every possi-
ble alignment (𝑅*, 𝑡*), there is a subset of 𝑃 and a subset



of 𝑄, both of size equal to the dimension 𝑑, which we call
a witness set. Using those subsets, our algorithm can de-
termine an alignment (𝑅′, 𝑡′), that approximates the cost of
(𝑅*, 𝑡*), i.e., cost(𝑃,𝑄, (𝑅′, 𝑡′)) ≤ 𝑐·cost(𝑃,𝑄, (𝑅*, 𝑡*)),
for small constant 𝑐 > 0. Here, cost assigns a non-negative
value for every pair of input point sets and alignment, and
(𝑅*, 𝑡*) can be the globally optimal (unknown) alignment.

For the sake of analysis only, we assume that (𝑅*, 𝑡*) is
known beforehand. The proof assumes an initial position
of the point clouds where (𝑅*, 𝑡*) has already been applied
to 𝑃 . It then applies a series of steps which alter this ini-
tial alignment (𝑅*, 𝑡*), until a different alignment (𝑅′, 𝑡′)
is obtained, where a (witness) set of points from 𝑃 and 𝑄
satisfies a sufficient number of known constraints, making
it feasible (given this witness set) to recover (𝑅′, 𝑡′). Each
step in this series is guaranteed to approximate the cost of its
preceding step. Hence, the cost of (𝑅′, 𝑡′) approximates the
initial (optimal) cost of (𝑅*, 𝑡*). The steps are as follows:

(i) Consider the set 𝑃 ′ obtained by applying the optimal (un-
known) alignment (𝑅*, 𝑡*) to 𝑃 . Now, consider the sin-
gle corresponding pair of points 𝑝′ = 𝑅*𝑝 − 𝑡* ∈ 𝑃 ′ and
𝑞 ∈ 𝑄 which have the closest distance ‖𝑝′ − 𝑞‖ between
them among all matched pairs. Using the triangle inequal-
ity, one can show that translating the set 𝑃 ′ by 𝑝′−𝑞 (that is,
such that 𝑝′ now intersects 𝑞) would not increase the pair-
wise distances of the other pairs of points by more than a
multiplicative factor of 2; see Fig. 2. Hence, we proved the
existence of a translation 𝑡′ of 𝑃 ′, where some 𝑝 ∈ 𝑃 inter-
sects its corresponding 𝑞 ∈ 𝑄, and where the cost is larger
than the initial optimal cost by at most a constant factor.
Now, assume that 𝑝′ and 𝑞 are located at the origin.

(ii) Similarly, we prove there is a corresponding pair of points
𝑝′ ∈ 𝑃 ′, 𝑞 ∈ 𝑄 such that aligning their direction vectors via
a rotation 𝑅′, i.e., 𝑅′ 𝑝′

‖𝑝′‖ = 𝑞
‖𝑞‖ , would increase the pair-

wise distances of the other pairs by at most a small factor.
𝑝′ and 𝑞 are the pair with the smallest angle between them.

(iii) We can repeat step (ii) above iteratively as follows: Find
such a pair (𝑝′, 𝑞), align their direction vectors, project the
two sets of points onto the hyperplane orthogonal to the di-
rection vector of 𝑞, and repeat at most 𝑑 − 2 times. Such
a projection insures that the next uncovered rotation will
maintain the alignment of (𝑝′, 𝑞); see Fig. 3. Each such step
proves the existence of yet another corresponding pair of
points which contribute at least 1 constraint on 𝑅′, without
damaging the cost by more than a constant factor. Hence,
there exist 𝑑 − 1 pairs of points which uniquely determine
our approximated rotation 𝑅′. We call the 𝑑 (unknown)
pairs from the steps above a witness set. Given a witness
set, the approximated alignment (𝑅′, 𝑡′) can be recovered.

Recovering such a witness set requires recovering 𝑑
points from 𝑃 (where 𝑑 is the dimension of 𝑃 ), which, us-

ing the known correspondence, uncover the 𝑑 correspond-
ing points from 𝑄. When the correspondence is unknown,
the minor difference is that we need to recover 𝑑 points from
𝑃 as well as 𝑑 independent points from 𝑄; see Theorem 5.

2. Provable Approximations
We now prove the existence of a witness set for the align-

ment and registration problems and their variants presented
above. We then present algorithms that recover such a wit-
ness set for each of the problems. Due to lack of space, all
our proofs are placed in the supplementary material.

Notation. We denote [𝑛] = {1, · · · , 𝑛} for any inte-
ger 𝑛 ≥ 1. We assume every vector is a column vector.
Let SO(𝑑) be the set of all rotation matrices in R𝑑. For
𝑡 ∈ R𝑑 and 𝑅 ∈ SO(𝑑), the pair (𝑅, 𝑡) is called an align-
ment. We define ALIGNMENTS(𝑑) to be the union of all
possible 𝑑-dimensional alignments. A correspondence (or
matching) function is simply a function 𝑚 : [𝑛] → [𝑛].
For a correspondence function 𝑚 and an ordered set 𝑃 =
{𝑝1, · · · , 𝑝𝑛}, we define 𝑃[𝑚] =

{︀
𝑝𝑚(1), · · · , 𝑝𝑚(𝑛)

}︀
as a

new ordered set obtained from 𝑃 after reordering its ele-
ments according to 𝑚.

2.1. Existence of a Witness Set

In what follows we present our main alignment algo-
rithm and our main technical result; see Algorithm 1 and
Theorem 1. Theorem 1 proves the existence of some wit-
ness set that, when plugged into Algorithm 1, produces an
alignment with some provable guarantees.

Overview of Algorithm 1. Algorithm 1 gets as input
two sets {𝑝1, · · · , 𝑝𝑑} and {𝑞1, · · · , 𝑞𝑑} in R𝑑, and imple-
ments the scheme described in Section 1.3. At Line 1,
we translate both sets so that 𝑝𝑑 and 𝑞𝑑 intersect at the
origin. At Line 4 we compute a rotation matrix 𝑆 that
aligns the directions of 𝑝1 and 𝑞1. In Lines 5– 6 we com-
pute an orthogonal matrix 𝑊 whose column space spans
the (𝑑 − 1)-dimensional subspace 𝜋 orthogonal to 𝑞1 and
project 𝑆𝑝2, · · · , 𝑆𝑝𝑑, 𝑞2, · · · , 𝑞𝑑 onto 𝜋, and repeat 𝑑 − 1
times. Hence, at the 𝑖’th iteration, we compute a rota-
tion 𝑆 that aligns the directions of 𝑝𝑖 (after 𝑖 − 1 ro-
tations and projections) and 𝑞𝑖 (after 𝑖 − 1 projections),
but also maintains the alignment of the previously aligned
pairs (𝑝1, 𝑞1), · · · , (𝑝𝑖−1, 𝑞𝑖−1). Such a matrix exists since
𝑝𝑖, · · · , 𝑝𝑑, 𝑞𝑖, · · · , 𝑞𝑑 are, by construction, orthogonal to
𝑝1, · · · , 𝑝𝑖−1, 𝑞1, · · · , 𝑞𝑖−1; see Fig. 3. We output an align-
ment which replicates the composition of the steps above.

Overview of Theorem 1. Consider 𝑃 = {𝑝1, · · · , 𝑝𝑛}
and 𝑄 = {𝑞1, · · · , 𝑞𝑛} and any variant of either the align-
ment or registration problems, e.g., (1)–(3). Now, assume
that (𝑅*, 𝑡*) and 𝑚* are respectively the globally optimal
alignment and correspondence function for the task at hand.
Observe that, in the alignment problem, 𝑚* is given as in-
put. Theorem 1 proves the existence of a set of 𝑑 points



Algorithm 1: ALIGN({𝑝1, · · · , 𝑝𝑑} , {𝑞1, · · · , 𝑞𝑑})

Input : Two sets of points that each spans a 𝑑− 1
dimensional subspace in R𝑑.

Output: An alignment (𝑅, 𝑡); see Theorem 1
1 𝑝𝑖 := 𝑝𝑖 − 𝑝𝑑 and 𝑞𝑖 := 𝑞𝑖 − 𝑞𝑑 for every 𝑖 ∈ [𝑑]

2 𝑅 := the identity matrix in R𝑑

3 for every 𝑧 ∈ [𝑑− 1] do
4 𝑆 := an arbitrary rotation matrix that satisfies

𝑆𝑝𝑧

‖𝑝𝑧‖ = 𝑞𝑧
‖𝑞𝑧‖ , and 𝑆𝑝𝑖 = 𝑝𝑖 for every 𝑖 ∈ [𝑧 − 1].

5 𝑊 := an arbitrary matrix in R𝑑×(𝑑−1) such that[︀
𝑊 | 𝑞𝑧

‖𝑞𝑧‖
]︀
∈ R𝑑×𝑑 forms a basis of R𝑑.

6 𝑝𝑖 := 𝑊𝑊𝑇𝑆𝑝𝑖 and 𝑞𝑖 := 𝑊𝑊𝑇 𝑞𝑖, for every
𝑖 ∈ [𝑑] ∖ [𝑧]

7 𝑝𝑧 := 𝑆𝑝𝑧
8 𝑅 := 𝑆𝑅

9 𝑡 := 𝑅𝑝𝑑 − 𝑞𝑑
10 return (𝑅, 𝑡)

from 𝑃 and 𝑑 points from 𝑄 that, when plugged into Algo-
rithm 1, produce an alignment (𝑅, 𝑡) which guarantees:⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚*(𝑖)

⃦⃦
≤ 𝜎·

⃦⃦
𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑚*(𝑖)

⃦⃦
, ∀𝑖 ∈ [𝑛]

for some small 𝜎 ≥ 1. For 𝑑 = 3 the constant is 𝜎 < 15. In
other words, using (𝑅, 𝑡) we can approximate each of the 𝑛
pairwise distances of the optimal alignment (𝑅*, 𝑡*). In the
registration problem, 𝑚* can be recovered afterwards, e.g.,
via nearest neighbour algorithm. Theorem 1 thus success-
fully decouples the two problems of recovering the align-
ment and recovering the correspondence function.

Theorem 1 (Witness sets). Let 𝑃 = {𝑝1, · · · , 𝑝𝑛} and 𝑄 =
{𝑞1, · · · , 𝑞𝑛} be two ordered sets each of 𝑛 points in R𝑑.
Then, for every alignment (𝑅*, 𝑡*) and matching function
𝑚*, there exist 𝑃 ′ ⊆ 𝑃 and 𝑄′ ⊆ 𝑄 of size |𝑃 ′| = |𝑄′| =
𝑑 such that the output (𝑅, 𝑡) of the call ALIGN(𝑃 ′, 𝑄′) to
Algorithm 1 satisfies the following for every 𝑖 ∈ [𝑛]:⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚*(𝑖)

⃦⃦
≤ (1 +

√
2)𝑑 ·

⃦⃦
𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑚*(𝑖)

⃦⃦
Furthermore, (𝑅, 𝑡) is computed in 𝑂(𝑑3) time.

In Section 2.2 we prove that individually approximating
the pairwise distances, as in Theorem 1, implies an imme-
diate approximation to a wide range of cost functions.

While Theorem 1 guarantees the existence of at least one
such witness set, empirically we have observed that many
subsets of 𝑃 and 𝑄 serve as good witness sets, in the sense
that they produce approximation factors smaller than pre-
dicted in the theorem. Those factors are usually even close
to 1. Hence, in Sections 2.3– 2.4 we apply RANSAC-type
algorithms to recover a witness set. Theorem 1 also implies

that running the suggested algorithms for a sufficient num-
ber of iterations produces a guaranteed constant factor ap-
proximation to the global optimum of the problems at hand.

2.2. Generalization

In what follows we define a wide family of cost func-
tions which this work tackles, including the cost functions
in (1)–(3). We then show that the approximation guaran-
tees obtained in Theorem 1 suffice to approximate each such
cost function; See Table 1 for examples. In what follows,
for 𝑟 > 0, an 𝑟-log-Lipschitz function is a function that, in
every dimension individually, may be large but cannot in-
crease too rapidly (in a rate that depends on 𝑟); see formal
definition in Section B at the appendix.

Definition 2 (Cost function). Let 𝑃 = {𝑝1, · · · , 𝑝𝑛} ⊆ R𝑑

and 𝑄 = {𝑞1, · · · , 𝑞𝑛} ⊆ R𝑑. Let 𝐷 : R𝑑 × R𝑑 → [0,∞)
be a function that assigns a non-negative weight for each
pair of points in R𝑑, ℓ : [0,∞) → [0,∞) be an 𝑟-log-
Lipschitz function and 𝑓 : [0,∞)𝑛 → [0,∞) be an 𝑠-log-
Lipschitz function. Let (𝑅, 𝑡) be an alignment. We define

cost(𝑃,𝑄, (𝑅, 𝑡))

= 𝑓 (ℓ (𝐷 (𝑅𝑝1 − 𝑡, 𝑞1)) , · · · , ℓ (𝐷 (𝑅𝑝𝑛 − 𝑡, 𝑞𝑛))) .

From pairwise distances to complex cost functions.
Observation 5 in [19] (see Section B in the appendix) states
that in order to approximate a given cost function from Def-
inition 2, relative to the globally optimal alignment and cor-
respondence (𝑅*, 𝑡*) and 𝑚* respectively, it is sufficient
to approximate, simultaneously, each of the pairwise dis-
tances

⃦⃦
𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑚*(𝑖)

⃦⃦
for every 𝑖 ∈ [𝑛]. By Theo-

rem 1, there exists a witness set which provides the desired
approximation for the above pairwise distances. Combin-
ing the above yields a provable approximation for any cost
function from Definition 2. It is only left to recover a desig-
nated witness set, which is the goal of Sections 2.3 and 2.4.

2.3. Approximations for the Alignment Problem

We now provide an algorithm which computes a prov-
able approximation for the alignment problem (1) and its
variants, i.e., when the matching between 𝑃 and 𝑄 is given.
This is by recovering a designated witness set.

Overview of Algorithm 2. Using Theorem 1 and assum-
ing the matching between 𝑃 and 𝑄 is given, one can con-
struct a RANSAC-type algorithm that iterates over 𝛾 sub-
sets of 𝑃 and 𝑄 of size 𝑑, applies Algorithm 1 to each two
such corresponding subsets to obtain a candidate alignment,
and returns the alignment that minimizes the cost function
at hand. Algorithm 2 implements the scheme above.

Theorem 3. Let 𝑃 and 𝑄 be two ordered sets of 𝑛 points
in R𝑑, 𝛾 ∈ Ω(𝑛𝑑), 𝑧 > 0, and 𝑤 = 𝑑|

1
𝑧−

1
2 |. Let

cost, 𝑟 and 𝑠 be as defined in Definition 2 for 𝐷(𝑝, 𝑞) =



Algorithm 2: APPROX-ALIGNMENT(𝑃,𝑄, 𝛾, cost)

Input : A pair of sets 𝑃 ⊆ R𝑑 and 𝑄 ⊆ R𝑑, number
of iterations 𝛾 > 0, and a cost function.

Output: An alignment (𝑅, 𝑡); see Theorem 3
1 𝑀 := ∅.
2 𝐼 := randomly sample, with no repetition, a set of 𝛾

tuples of 𝑑 distinct indices from [𝑛]. // |𝐼| = 𝛾
3 for every (𝑖1, · · · , 𝑖𝑑) ∈ 𝐼 do
4 (𝑅′, 𝑡′) :=

ALIGN({𝑝𝑖1 , · · · , 𝑝𝑖𝑑} , {𝑞𝑖1 , · · · , 𝑞𝑖𝑑})
// see Algorithm 1

5 𝑀 := 𝑀 ∪ {(𝑅′, 𝑡′)}
6 (𝑅, 𝑡) ∈ arg min

(𝑅′,𝑡′)∈𝑀

cost (𝑃,𝑄, (𝑅′, 𝑡′))

7 return (𝑅, 𝑡)

‖𝑝− 𝑞‖𝑧 . Let (𝑅, 𝑡) be the output of a call to APPROX-
ALIGNMENT(𝑃,𝑄, 𝛾, cost); See Algorithm 2. Then,

cost(𝑃,𝑄, (𝑅, 𝑡)) ≤ 𝑤𝑟𝑠·(1+
√

2)𝑑𝑟𝑠· min
(𝑅′,𝑡′)

cost(𝑃,𝑄, (𝑅′, 𝑡′)),

where the minimum is over every (𝑅′, 𝑡′) ∈ ALIGNMENTS.
Moreover, (𝑅, 𝑡) is computed in 𝑛𝑂(𝑑) time.

2.3.1 Run-Time Improvement

We now propose a randomized algorithm (see Algorithm 3)
with the same goal as Algorithm 1, that succeeds with con-
stant probability. By running this algorithm for a constant
number of times, we can recover an alignment that, with
probability approaching 1, has the same guarantees as the
output of Algorithm 2. However, this new randomized al-
gorithm requires linear, rather than polynomial, time.

Overview of Algorithm 3. Unlike Algorithm 1, which
expects to receive a witness set as input, Algorithm 3 takes
as input two full point clouds, and internally identifies a
potential witness set. Intuitively, points in 𝑃 with larger
norm negatively affect our cost function more than points of
smaller norm, when misaligned properly; see Fig. 11 at the
appendix. Algorithm 3 thus samples a pair of corresponding
points (𝑝, 𝑞) with probability that depends on the norm of
𝑝 and rotates 𝑃 to align the direction vectors of 𝑝 and 𝑞.
Then, similarly to Algorithm 1, it projects the sets onto the
hyperplane orthogonal to 𝑞 and repeats.

Theorem 4. Let 𝑃 and 𝑄 be two ordered sets of 𝑛 points in
R𝑑 and 𝑧 > 0. Let cost be as in Definition 2 for 𝑓 = ‖𝑣‖1,
some 𝑟-log Lipschitz function ℓ and 𝐷(𝑝, 𝑞) = ‖𝑝− 𝑞‖𝑧 .
Let (𝑅, 𝑡) be an output of a call to PROB-ALIGN(𝑃,𝑄, 𝑟);
see Algorithm 3. Then, with probability at least 1

2𝑑
,

cost(𝑃,𝑄, (𝑅, 𝑡)) ≤ 𝜎· min
(𝑅′,𝑡′)∈ALIGNMENTS(𝑑)

cost(𝑃,𝑄, (𝑅′, 𝑡′)),

Algorithm 3: PROB-ALIGN(𝑃,𝑄, 𝑟)

Input : A pair of sets 𝑃 = {𝑝1, · · · , 𝑝𝑛} and
𝑄 = {𝑞1, · · · , 𝑞𝑛} in R𝑑 and 𝑟 > 0.

Output: A rotation matrix; see Theorem 4
1 Sample an index 𝑘 ∈ [𝑛] uniformly at random
2 𝑝 := 𝑝− 𝑝𝑘 for every 𝑝 ∈ 𝑃
3 𝑞 := 𝑞 − 𝑞𝑘 for every 𝑞 ∈ 𝑄
4 𝐽 := {𝑘} and 𝑅 := the 𝑑-dimensional identity matrix
5 for every 𝑧 ∈ [𝑑− 1] do
6 𝑤𝑖 := ‖𝑝𝑖‖𝑟∑︀

𝑗∈[𝑛]‖𝑝𝑗‖𝑟 for every 𝑖 ∈ [𝑛].

7 Randomly sample an index 𝑗 ∈ [𝑛] ∖ 𝐽 , where
𝑗 = 𝑖 with probability 𝑤𝑖.

8 𝑆 := an arbitrary rotation matrix that satisfies
𝑆𝑝𝑗

‖𝑝𝑗‖ =
𝑞𝑗

‖𝑞𝑗‖ and 𝑆𝑝𝑖 = 𝑝𝑖 for every 𝑖 ∈ 𝐽 .

9 𝑊 := a matrix in R𝑑×(𝑑−1) such that[︀
𝑊 | 𝑞𝑗

‖𝑞𝑗‖
]︀
∈ R𝑑×𝑑 forms a basis of R𝑑.

10 𝐽 := 𝐽 ∪ {𝑗}
11 𝑝 := 𝑆𝑝 for every 𝑝 ∈ 𝑃

12 𝑝 := 𝑊𝑊𝑇 𝑝 for every 𝑝 ∈ 𝑃 ∖ {𝑝𝑖 | 𝑖 ∈ 𝐽}
13 𝑞 := 𝑊𝑊𝑇 𝑞 for every 𝑞 ∈ 𝑄 ∖ {𝑞𝑖 | 𝑖 ∈ 𝐽}
14 𝑅 := 𝑆𝑅

15 𝑡 := 𝑅𝑝𝑘 − 𝑞𝑘
16 return (𝑅, 𝑡)

for a constant 𝜎 that depends on 𝑑 and 𝑟. Furthermore,
(𝑅, 𝑡) is computed in 𝑂(𝑛𝑑3) time.

Success probability. For the usual case of 𝑑 = 3, the
success probability of Algorithm 3 is at least 1/8. Hence,
repeating Algorithm 3 for less than 6 repetitions amplifies
the success probability in Theorem 4 to more than 1/2.

2.4. Approximations for the Registration Problem

As explained in Section 1.3, a witness set from 𝑃 and 𝑄
also exists in the much harder variant where the matching
between 𝑃 and 𝑄 is unknown. We now provide an algo-
rithm that, for any given variant of the registration problem,
can recover a witness set. The formal statement is given in
Theorem 5, which is one of our main contributions.

Overview of Algorithm 4. Unlike Algorithm 2 which
samples 𝑑 indices used to index both 𝑃 and a 𝑄, we now
have to independently sample 𝑑 indices for points in 𝑃 as
well as 𝑑 indices for points in 𝑄. Furthermore, we need to
compute the nearest neighbour matching for every candi-
date alignment returned by Algorithm 1, before evaluating
the cost function. Algorithm 4 applies the above scheme 𝛾
times and returns the alignment and matching function that
minimize the given cost function.

Theorem 5. Let 𝑃 = {𝑝1, · · · , 𝑝𝑛}, 𝑄 = {𝑞1, · · · , 𝑞𝑛} be
two ordered sets of 𝑛 points in R𝑑, 𝛾 ∈ Ω(𝑛2𝑑), 𝑧 > 0,



Algorithm 4: ALIGN-AND-MATCH(𝑃,𝑄, 𝛾, cost)

Input : A pair of sets 𝑃 ⊆ R𝑑 and 𝑄 ⊆ R𝑑, number
of iterations 𝛾 > 0, and a cost function.

Output: An alignment and a matching function; see
Theorem 5

1 𝑀 := ∅.
2 𝐼 := randomly sample, with no repetition, a set of 𝛾

tuples of 2𝑑 indices (𝑖1, · · · , 𝑖𝑑, 𝑗1, · · · , 𝑗𝑑) from
[𝑛], such that 𝑖1, · · · , 𝑖𝑑 are distinct and
𝑗1, · · · , 𝑗𝑑 are distinct. // |𝐼| = 𝛾

3 for every (𝑖1, · · · , 𝑖𝑑, 𝑗1, · · · , 𝑗𝑑) ∈ 𝐼 do
4 (𝑅′, 𝑡′) :=

ALIGN({𝑝𝑖1 , · · · , 𝑝𝑖𝑑} , {𝑞𝑗1 , · · · , 𝑞𝑗𝑑})
// see Algorithm 1

5 𝑀 := 𝑀 ∪ {(𝑅′, 𝑡′, NN(𝑃,𝑄, (𝑅′, 𝑡′)))}
/* NN(𝑃,𝑄, (𝑅, 𝑡)) is the nearest
neighbour matching between 𝑄,
and 𝑃 after applying (𝑅, 𝑡). */

6 (𝑅̃, 𝑡, 𝑚̃) ∈ arg min
(𝑅′,𝑡′,𝑚′)∈𝑀

cost
(︀
𝑃[𝑚′], 𝑄, (𝑅′, 𝑡′)

)︀
.

7 return (𝑅̃, 𝑡, 𝑚̃)

and 𝑤 = 𝑑|
1
𝑧−

1
2 |. Let cost and 𝑟 be as in Definition 2

for 𝐷 = ‖𝑝− 𝑞‖𝑧 and 𝑓(𝑣) = ‖𝑣‖1. Let (𝑅̃, 𝑡, 𝑚̃) be the
output of a call to ALIGN-AND-MATCH(𝑃,𝑄, 𝛾, cost); See
Algorithm 4. Then, for 𝑐 = 𝑤𝑟(1 +

√
2)𝑑𝑟, we have

cost
(︁
𝑃[𝑚̃], 𝑄, (𝑅̃, 𝑡)

)︁
≤ 𝑐 · min

(𝑅,𝑡,𝑚)
cost

(︀
𝑃[𝑚], 𝑄, (𝑅, 𝑡)

)︀
,

where the minimum is over every alignment (𝑅, 𝑡) and per-
mutation 𝑚. Moreover, (𝑅̃, 𝑡, 𝑚̃) is computed in 𝑛𝑂(𝑑) time.

Substituting 𝑧 = 𝑟 = 2 in Theorem 5 yields a provable
approximated alternative to ICP.

Comparison to RANSAC. RANSAC has some similar-
ity to Algorithms 2 and 4 above in the sense that they both
randomly sample points from 𝑃 and 𝑄. However, while
RANSAC recovers a candidate alignment via common least
squares on such candidate 𝑑 pairs (see Section 1), our algo-
rithms utilize a novel method (Algorithm 1) which is not
necessarily optimal for those 𝑑 pairs, but will be (almost)
globally optimal for the overall cost of all the 𝑛 pairs. In
theory, unlike our algorithms, RANSAC does not guarantee
global optimality; see comparison in Section 3.1.

Our approximation constants. While the approxima-
tion constants in Theorems 3- 5 above might seem large,
they are only roughly < 14 in the pessimistic worst-case
theory, they are smaller than 2 in practice, and can be ob-
tained much faster than the suggested time; see Section 3.

3. Experimental Results

We now apply our algorithms to solve either the align-
ment or the registration problems. Additional experiments
on real-world scans from the SUN3D dataset [48] are placed
in Section F at the appendix.

Datasets. We used the Bunny, Armadillo, and Asian
Dragon models from the Stanford 3D scanning reposi-
tory [9, 23, 43]. Those models were scaled to [−0.5, 0.5]3

due to the constraints of some competing methods (e.g.,
GO-ICP). We also used a synthetic dataset comprising uni-
formly sampled 𝑑-dimensional points in [−0.5, 0.5]𝑑.

Generating 𝑃 and 𝑄. In all experiments, given some
data model (real or synthetic), we uniformly sample 𝑛
points named 𝑄. An alignment (𝑅, 𝑡) is generated, where
𝑡 is uniformly sampled such that ‖𝑡‖ ≤ 0.1 and 𝑅 rotates
the data around each axis by an angle uniformly sampled
from [−𝜋, 𝜋]. 𝑃 is then obtained by applying (𝑅, 𝑡) to 𝑄
and adding Gaussian noise with zero mean and 𝜎2 variance.
In Section 3.2 we also apply a random shuffle to 𝑃 .

Evaluation. We present two evaluation metrics: (i)
The value of the minimized cost function itself, e.g., the
value of (1) or (3). If not given, the optimal correspon-
dence is trivially computed, after applying (𝑅, 𝑡) to 𝑃 ,
via nearest neighbor. (ii) Rotation and translation errors:⃦⃦
𝑅𝑇𝑅* − 𝐼

⃦⃦
𝐹

and ‖𝑡− 𝑡*‖2, where (𝑅*, 𝑡*) and (𝑅, 𝑡)
are the ground truth and the recovered alignments, respec-
tively. Every experiment in this section was conducted 20
times and averaged. The variance is presented in the graphs.

3.1. Alignment Experiments

Here, we assume the correspondences function is given.
We applied three algorithms: (i) P-RANSAC: Provable
RANSAC - an implementation in Python of Algorithm 2,
(ii) RANSAC: A RANSAC scheme equipped with the com-
mon least squares solution to recover an alignment, and (iii)
TEASER++: The state of the art TEASER++ [49].

In Fig. 4 we compare the algorithms above, and in Fig. 5
we demonstrate P-RANSAC’s fast recovery of an alignment
with an approximation constant close to 1, even in high
dimensions. In the latter test, the ground truth solution
(𝑅*, 𝑡*) is computed via SVD as explained in Section 1.1.

Discussion. Fig. 4 demonstrates that Algorithm 2 out-
performs state of the art methods, in multiple common met-
rics. Fig. 5 shows that it suffices for our algorithm, in prac-
tice, to sample roughly 40 subsets (in 𝑑 = 3) until an error
of at most x1.5 the globally minimal cost is obtained. Fur-
thermore, recall that Algorithm 3 provides a probabilistic
alternative for Algorithm 2, by reducing number of itera-
tions in the cost of larger approximation constants. How-
ever, Algorithm 2 was sufficient in practice as it produced
very small approximation constants in very few iterations.



Figure 4: The Bunny model, 𝑛 = 2000 points and 𝜎2 =
0.009 noise variance were used. The cost in our algorithm
was SSD with M-estimator min{‖𝑝− 𝑞‖2 , 1}. The inliers
cost is the mean error over the ground truth inlier pairs.

Figure 5: The approximation quality 𝛼 (the cost of
P-RANSAC divided by the ground truth) as a function of
the number of iteration 𝛾. (Left): Bunny, Armadillo, and
Asian Dragon models. The obtained alignment is also visu-
alized. (Right): Synthetic data. In both figures 𝑛 = 2500
and 𝜎2 = 0.01. The cost in our algorithm was the SSD.

3.2. Registration Experiments

In this section we compared the following algorithms:
(i) ICP(𝑃,𝑄) - An implementation of the ICP algo-
rithm [7]. (ii) P-ICP(𝑃,𝑄, 𝛾, cost) - Provable ICP; A par-
allelized implementation in Python of Algorithm 4. (iii)
P-ICP-Refined(𝑃,𝑄, 𝛾, cost) - Applying the output
alignment of P-ICP to the set 𝑃 , then refining the align-
ment via single ICP run, on 𝑄 and the transformed 𝑃 . As
the ICP is guaranteed to converge to a local minimum, it can
only help reduce the cost of our (approximately optimal)
output result to the closest (hopefully global) minimum. (iv)
CPD(𝑃,𝑄) - The Coherent Point Drift algorithm [31]. (v)
GO-ICP(𝑃,𝑄) - The common ICP variant [50].

We tested multiple cost functions. Fig. 6 and Fig. 7
present the results for noisy input data, and data containing
outliers respectively. Visual comparison is shown in Fig. 1.

Figure 6: Armadillo model with 𝜎2 = 0.01 noise variance.
The SSD cost function was used in our algorithms. The
test was executed on the AWS platform, on a c5a.8xlarge
machine with 32 CPUs.

Figure 7: Robustness to outliers using the Armadillo model.
𝑛 = 800 was used. Noise with variance 𝜎2 = 1 was added
to 𝑘 percentage of the points in 𝑃 , which are considered
as outliers. The SSD with M-estimator min{‖𝑝− 𝑞‖2 , 0.2}
was used in our algorithms. The computational time was
roughly constant for each method for all tested 𝑘 values,
and is presented in Fig. 6 at 𝑛 = 800.

Discussion. Fig. 6 demonstrates the accuracy of our al-
gorithms, which yield an error smaller by x2-x10 than other
methods, while also being among the fastest. Fig. 7 and 1
demonstrate our robustness to outliers in practice, due to
our provable approximation to M-estimators cost functions.

4. Conclusions, Limitations, and Future Work

We present provable and practical non-trivial approxima-
tion algorithms for the alignment and registration problems
and their hard variants. The algorithms rely on our proof
that a witness set, which determines an approximated align-
ment, exists for both problems. Experiments show that our
algorithms are efficient in practice, produce smaller errors,
and are more stable than competing methods. The main
limitation of our algorithm is their high running-time depen-
dency on the dimension 𝑑. However, fortunately, for most
applications 𝑑 is a small constant. Future work includes: (i)
generalizing to the non-rigid registration problem, and (ii)
fast recovery of a witness set via deep learning.
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A. Existence of a Witness Set
In what follows, we denote by 0⃗ the origin of R𝑑. The 𝑑

dimensional identity matrix is denoted by 𝐼𝑑 ∈ R𝑑×𝑑. For
𝑝 ∈ R𝑑 we denote by proj(𝑝,𝑋) its projection on a set
𝑋 ⊆ R𝑑, that is, proj(𝑝,𝑋) ∈ arg min𝑥∈𝑋 dist(𝑝, 𝑥). For
a set of vectors 𝑃 ⊆ R𝑑, we denote by sp(𝑃 ) the linear span
of the set 𝑃 . For a single vector 𝑝 ∈ R𝑑 we abuse notation
and denote sp({𝑝}) by sp(𝑝) for short.

In what follows, given some Linear subspace 𝑋 of R𝑑,
we define ℛ𝑋 to be the set of all rotation matrices 𝑅 such
that 𝑝 ∈ 𝑋 if and only if 𝑅𝑝 ∈ 𝑋; see Fig. 8.

Definition 6. Let 𝜏 ∈ {0, · · · , 𝑑}, let 𝑋 be a 𝜏 -dimensional
subspace of R𝑑, and let 𝑉𝑋 ∈ R𝑑×𝑑 be a unitary arbitrary
matrix whose 𝜏 leftmost columns span 𝑋 . We define

ℛ𝑋 =

{︂
𝑉𝑋

(︂
𝑅 0
0 𝐼𝑑−𝜏

)︂
𝑉 𝑇
𝑋 | 𝑅 ∈ SO(𝜏)

}︂
,

for 𝜏 ≥ 2, and ℛ𝑋 = {𝐼𝑑} otherwise.

For example, if 𝑋 is spanned by the first 𝜏 axis of R𝑑

then ℛ𝑋 contains all the rotation matrices in SO(𝑑) which,
when multiplied by any point in 𝑝 ∈ R𝑑, affect only the first
𝜏 coordinates of 𝑝. If not, 𝑉 𝑇

𝑋 aligns 𝑋 with the first 𝜏 axis
of R𝑑 and 𝑉𝑋 does the inverse rotation; see Fig. 8.

Figure 8: A plane 𝑋 in R3. ℛ𝑋 con-
tains all the rotation matrices that map
points 𝑝 ∈ 𝑋 (solid dark blue) to other
points 𝑝′ ∈ 𝑋 (solid light blue), and
points 𝑞 ̸∈ 𝑋 (dark blue circles) to
points 𝑞′ ̸∈ 𝑋 (light blue circles).

Overview of Claim 6.1. Let 𝑅 ∈ ℛ𝑋 be an arbitrary
rotation matrix that rotates a 2-dimensional plane 𝑋 in R𝑑,
for example, a rotation matrix that affects only the first two
coordinates of the points it multiplies. In this example, 𝑋
is the 𝑥𝑦-plane. In what follows we formally prove that
displacement of a unit vector 𝑝 ∈ 𝑋 , after multiplication
with 𝑅 (i.e., ‖𝑅𝑝− 𝑝‖), must be greater than or equal to
the displacement of a unit vector 𝑞 ̸∈ 𝑋 after multiplication
with the same 𝑅 (i.e., ‖𝑅𝑞 − 𝑞‖).

Claim 6.1. Let 𝑑 ≥ 2 be an integer. Let 𝑋 be a 2-
dimensional subspace (plane) of R𝑑, let 𝑝 ∈ 𝑋 ∖

{︁
0⃗
}︁

,
and let 𝑅 ∈ ℛ𝑋 be a rotation matrix that rotates every
𝑥 ∈ 𝑋 by at most 𝜃 ∈ [−𝜋/2, 𝜋/2] radians around the

origin. Then for every 𝑞 ∈ R𝑑 ∖
{︁

0⃗
}︁

‖𝑅𝑞 − 𝑞‖
‖𝑞‖

≤ ‖𝑅𝑝− 𝑝‖
‖𝑝‖

.

Proof. Without loss of generality, assume that 𝑋 is spanned
by the standard vectors 𝑒1, 𝑒2 ∈ R𝑑. Otherwise rotate the
coordinates system. Since 𝑅 ∈ ℛ𝑋 and 𝑋 is spanned by
the first two standard basis vectors, 𝑅 can be expressed as

𝑅 =

(︂
𝑅′ 0
0 𝐼𝑑−2

)︂
,

where 𝑅′ =

(︂
cos𝛼 sin𝛼
− sin𝛼 cos𝛼

)︂
is a two dimensional ro-

tation matrix, for some 𝛼 ∈ [−𝜋/2, 𝜋/2]; see Definition 6.
Let 𝑝′ ∈ R2 denote the first two entries of 𝑝, and 𝑞′ ∈ R2

denote the first two entries of 𝑞. Notice that

‖𝑝‖ = ‖𝑝′‖ (4)

since 𝑝 ∈ 𝑋 and 𝑋 is spanned by 𝑒1 and 𝑒2. By the defini-
tion of the matrix 𝑅, we have that

‖𝑅𝑝− 𝑝‖ = ‖𝑅′𝑝′ − 𝑝′‖ and ‖𝑅𝑞 − 𝑞‖ = ‖𝑅′𝑞′ − 𝑞′‖ .
(5)

Therefore,

‖𝑅𝑞 − 𝑞‖2

‖𝑞‖2
=

‖𝑅′𝑞′ − 𝑞′‖2

‖𝑞‖2
=

2 ‖𝑞′‖2 − 2𝑞′
𝑇

(𝑅′𝑞′)

‖𝑞‖2
(6)

≤ 2 ‖𝑞′‖2 − 2𝑞′
𝑇

(𝑅′𝑞′)

‖𝑞′‖2
=

2 ‖𝑝′‖2 − 2𝑝′
𝑇

(𝑅′𝑝′)

‖𝑝′‖2
(7)

=
‖𝑅′𝑝′ − 𝑝′‖2

‖𝑝′‖2
=

‖𝑅′𝑝′ − 𝑝′‖2

‖𝑝‖2
(8)

=
‖𝑅𝑝− 𝑝‖2

‖𝑝‖2
, (9)

where the first derivation in (6) is by (5), the first derivation
in (7) holds since ‖𝑞′‖ ≤ ‖𝑞‖, the second derivation in (7)
holds since 𝑞′𝑇 (𝑅′𝑞′)

‖𝑞′‖2 = 𝑝′𝑇 (𝑅′𝑝′)

‖𝑝′‖2 , the first inequality in (8)
holds is by (4), and (9) is by (5).

Claim 6.1 now holds by taking the squared root of (8).

Overview of Lemma 7. For two vectors 𝑝, 𝑞 ∈ R𝑑, we
define the angle between 𝑝 and 𝑞 as the smallest angle be-
tween them when considering the 2-dimensional subspace
that they span.

Now, consider two ordered sets of points 𝑃 and 𝑄 con-
tained in some subspace 𝜋 of R𝑑, and let 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄
be a pair of corresponding points, whose angle between
them is the smallest among all 𝑛 corresponding pairs. Let
𝑅 ∈ SO(𝑑) be a rotation matrix that aligns the direction
of 𝑝 with the direction of 𝑞, i.e., 𝑅𝑝 ∈ sp(𝑞). Then the
following lemma proves that after rotating 𝑃 by 𝑅, the dis-
tance from every point in 𝑃 to its corresponding point in 𝑄



will at most increase by a multiplicative factor of (1 +
√

2).
Furthermore, 𝑅 does not affect any point outside of 𝜋, i.e.,
𝑅 ∈ ℛ𝜋 .

Lemma 7. Put 𝑟 ∈ [𝑑]. Let 𝜋 be an 𝑟-dimensional subspace
of R𝑑, 𝑃 = {𝑝1, · · · , 𝑝𝑛} ⊂ 𝜋 and 𝑄 = {𝑞1, · · · , 𝑞𝑛} ⊂ 𝜋
be two ordered sets of points. Put ℛ* in SO(𝑑). Then there
is an index 𝑗 ∈ [𝑛] and a rotation matrix 𝑅′ ∈ ℛ𝜋 that
satisfy the following properties:

(i) For every 𝑖 ∈ [𝑛],

‖𝑅′𝑝𝑖 − 𝑞𝑖‖ ≤ (1 +
√

2) · ‖𝑅*𝑝𝑖 − 𝑞𝑖‖ (10)

and

(ii) 𝑅′𝑝𝑗 ∈ sp(𝑞𝑗) and ‖𝑝𝑗‖ , ‖𝑞𝑗‖ ≠ 0.

Proof. Throughout this proof, for simplicity of notation, we
assume that the points of 𝑃 have already been rotated by the
rotation matrix 𝑅*, i.e., we assume that 𝑅* is the identity
matrix. Therefore, (10) reduces to

‖𝑅′𝑝𝑖 − 𝑞𝑖‖ ≤ (1 +
√

2) · ‖𝑝𝑖 − 𝑞𝑖‖

for every 𝑖 ∈ [𝑛].
We first observe that if ‖𝑝𝑖‖ = 0 or ‖𝑞𝑖‖ = 0 for

some 𝑖 ∈ [𝑛], then for any rotation matrix 𝑅 we have that
‖𝑅𝑝𝑖 − 𝑞𝑖‖ = ‖𝑝𝑖 − 𝑞𝑖‖. Hence, for the rest of the proof,
we assume for simplicity that ‖𝑝𝑖‖ , ‖𝑞𝑖‖ ≠ 0 for every
𝑖 ∈ [𝑛].

In what follows we pick a pair of corresponding input
points 𝑝𝑗 , 𝑞𝑗 which have the smallest angle between them
around the origin, among all the input pairs (ties broken ar-
bitrarily). We then show that there is a rotation matrix 𝑅𝑗

that aligns the direction vectors of 𝑝𝑗 and 𝑞𝑗 and satisfies
the requirements of the lemma.

For every 𝑖 ∈ [𝑛], let 𝑋𝑖 = sp({𝑝𝑖, 𝑞𝑖}) be the plane
spanned by 𝑝𝑖 and 𝑞𝑖, and 𝑅𝑖 ∈ ℛ𝑋𝑖

be a rotation matrix
that satisfies 𝑅𝑖𝑝𝑖 ∈ sp(𝑞𝑖), i.e., aligns the directions of the
vectors 𝑝𝑖 and 𝑞𝑖 by a rotation in the 2-dimensional sub-
space (plane) 𝑋𝑖 that these pair of vectors span. If there is
more than one such rotation matrix, pick an arbitrary one
among the (possible two) which rotate 𝑝𝑖 with the smallest
angle of rotation.

Put 𝑖 ∈ [𝑛]. Let 𝜋𝑖 be a 2-dimensional subspace that
contains 𝑝𝑖 and 𝑅𝑖𝑝𝑖. By the definition of 𝑅𝑖, we have that

𝑅𝑖𝑝𝑖 ∈ sp(𝑞𝑖) ⊆ 𝜋𝑖. Let 𝑗 ∈ arg min
𝑘∈[𝑛]

‖𝑅𝑘𝑝𝑘 − 𝑝𝑘‖
‖𝑝𝑘‖

, i.e., 𝑗

is the index of the corresponding pair that have the smallest
angle among all pair of corresponding points.

We now prove that the distance ‖𝑅𝑗𝑝𝑖 − 𝑞𝑖‖ between the
corresponding pair 𝑝𝑖 ∈ 𝑃 and 𝑞𝑖 ∈ 𝑄 after applying 𝑅𝑗 is
larger by at most a multiplicative factor of (1 +

√
2) com-

pared to their original distance ‖𝑝𝑖 − 𝑞𝑖‖. We have that

‖𝑅𝑗𝑝𝑖 − 𝑝𝑖‖
‖𝑝𝑖‖

≤ ‖𝑅𝑗𝑝𝑗 − 𝑝𝑗‖
‖𝑝𝑗‖

≤ ‖𝑅𝑖𝑝𝑖 − 𝑝𝑖‖
‖𝑝𝑖‖

, (11)

where the first inequality holds by substituting 𝑝 = 𝑝𝑗 , 𝑞 =
𝑝𝑖 and 𝑅 = 𝑅𝑗 in Claim 6.1, and the second inequality
holds by the definition of 𝑗. Multiplying (11) by ‖𝑝𝑖‖ yields

‖𝑅𝑗𝑝𝑖 − 𝑝𝑖‖ ≤ ‖𝑅𝑖𝑝𝑖 − 𝑝𝑖‖ . (12)

We now prove Lemma 7 (i) for 𝑅′ = 𝑅𝑗 , i.e., we prove
that

‖𝑅𝑗𝑝𝑖 − 𝑞𝑖‖ ≤ (1 +
√

2) · ‖𝑝𝑖 − 𝑞𝑖‖ . (13)

Lemma 7 (ii) then follows by the definition of 𝑅𝑗 .
We prove (13) by the following case analysis: (i) 𝑅𝑖 is

the identity matrix, (ii) ‖𝑞𝑖‖ > ‖𝑝𝑖‖ and 𝑅𝑖 is not the iden-
tity matrix, and (iii) ‖𝑞𝑖‖ ≤ ‖𝑝𝑖‖ and 𝑅𝑖 is not the identity
matrix.

Case (i): 𝑅𝑖 is the identity matrix. In this case we have
that ‖𝑅𝑖𝑝𝑖 − 𝑝𝑖‖ = 0. Therefore, by the definition of 𝑗,
we have that ‖𝑅𝑗𝑝𝑗 − 𝑝𝑗‖ = 0, i.e., 𝑅𝑗 is also the identity
matrix. Hence, Case (i) trivially holds as ‖𝑅𝑗𝑝𝑖 − 𝑞𝑖‖ =
‖𝑝𝑖 − 𝑞𝑖‖ ≤ (1 +

√
2) · ‖𝑝𝑖 − 𝑞𝑖‖.

Case (ii): ‖𝑞𝑖‖ > ‖𝑝𝑖‖ and 𝑅𝑖 is not the identity matrix.
By the definition of proj, we have that 𝑝𝑖−proj(𝑝𝑖, sp(𝑞𝑖))
is orthogonal to 𝑞𝑖. Combining this with the fact that
the vector (proj(𝑝𝑖, sp(𝑞𝑖)) − 𝑞𝑖) has the same direction
as 𝑞𝑖 yields that (𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖))) is orthogonal to
(proj(𝑝𝑖, sp(𝑞𝑖)) − 𝑞𝑖), i.e.,

(𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖)))
𝑇 (proj(𝑝𝑖, sp(𝑞𝑖)) − 𝑞𝑖) = 0. (14)

Similarly, we have that (𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖))) is or-
thogonal to (proj(𝑝𝑖, sp(𝑞𝑖)) − 𝑅𝑖𝑝𝑖). Therefore, by
applying the Pythagorean theorem in the right triangle
∆(𝑝𝑖,proj(𝑝𝑖, sp(𝑞𝑖)), 𝑅𝑖𝑝𝑖) we obtain

‖𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖))‖2 + ‖proj(𝑝𝑖, sp(𝑞𝑖)) −𝑅𝑖𝑝𝑖‖2

= ‖𝑝𝑖 −𝑅𝑖𝑝𝑖‖2 .
(15)

Observer that

‖proj(𝑝𝑖, sp(𝑞𝑖))‖ ≤ ‖𝑝𝑖‖ = ‖𝑅𝑖𝑝𝑖‖ < ‖𝑞𝑖‖ , (16)

where the last derivation is by the assumption of Case (ii).
Combining (16) with the fact that proj(𝑝𝑖, sp(𝑞𝑖)), 𝑅𝑖𝑝𝑖 and
𝑞𝑖 lie on the straight line sp(𝑞𝑖), we obtain that

‖proj(𝑝𝑖, sp(𝑞𝑖)) − 𝑞𝑖‖
= ‖proj(𝑝𝑖, sp(𝑞𝑖)) −𝑅𝑖𝑝𝑖‖ + ‖𝑅𝑖𝑝𝑖 − 𝑞𝑖‖ .

(17)



Therefore

‖𝑝𝑖 − 𝑞𝑖‖2 = ‖𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖)) + proj(𝑝𝑖, sp(𝑞𝑖)) − 𝑞𝑖‖2

= ‖𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖))‖2

+ ‖proj(𝑝𝑖, sp(𝑞𝑖)) − 𝑞𝑖‖2 (18)

= ‖𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖))‖2

+ (‖proj(𝑝𝑖, sp(𝑞𝑖)) −𝑅𝑖𝑝𝑖‖ + ‖𝑅𝑖𝑝𝑖 − 𝑞𝑖‖)
2

(19)

= ‖𝑝𝑖 − proj(𝑝𝑖, sp(𝑞𝑖))‖2

+ ‖proj(𝑝𝑖, sp(𝑞𝑖)) −𝑅𝑖𝑝𝑖‖2 + ‖𝑅𝑖𝑝𝑖 − 𝑞𝑖‖2

+ 2 ‖proj(𝑝𝑖, sp(𝑞𝑖)) −𝑅𝑖𝑝𝑖‖ · ‖𝑅𝑖𝑝𝑖 − 𝑞𝑖‖

= ‖𝑅𝑖𝑝𝑖 − 𝑝𝑖‖2 + ‖𝑅𝑖𝑝𝑖 − 𝑞𝑖‖2

+ 2 ‖proj(𝑝𝑖, sp(𝑞𝑖)) −𝑅𝑖𝑝𝑖‖ · ‖𝑅𝑖𝑝𝑖 − 𝑞𝑖‖
(20)

≥ ‖𝑅𝑖𝑝𝑖 − 𝑝𝑖‖2 , (21)

where (18) is by (14), (19) is by (17), and (20) is by (15).
Combining (12) and (21) yields

‖𝑅𝑗𝑝𝑖 − 𝑝𝑖‖ ≤ ‖𝑝𝑖 − 𝑞𝑖‖ . (22)

Hence, (13) holds for Case (ii) as

‖𝑅𝑗𝑝𝑖 − 𝑞𝑖‖ ≤ ‖𝑅𝑗𝑝𝑖 − 𝑝𝑖‖ + ‖𝑝𝑖 − 𝑞𝑖‖ ≤ 2 · ‖𝑝𝑖 − 𝑞𝑖‖ ,

where the first derivation holds by the triangle inequality,
and the second derivation by (22).

Case (iii): ‖𝑞𝑖‖ ≤ ‖𝑝𝑖‖ and 𝑅𝑖 is not the identity matrix.
Since 𝑅𝑖 is not the identity matrix, then 𝑝𝑖 and 𝑅𝑖𝑝𝑖 are
distinct points. Let 𝑞* = proj(𝑝𝑖, sp(𝑅𝑖𝑝𝑖)). Combining
the definition of 𝑞* with the fact that 𝑝𝑖 and 𝑅𝑖𝑝𝑖 are distinct
points, we obtain that all three points 𝑝𝑖, 𝑅𝑖𝑝𝑖 and 𝑞* are
distinct.

Consider the triangle ∆(𝑝𝑖, 𝑅𝑖𝑝𝑖, 0⃗). Let 𝛼 ∈ [0, 𝜋/2]
be the angle at vertex 0⃗ of the triangle; see Fig. 9 for illus-
tration. Since ‖𝑝𝑖‖ = ‖𝑅𝑖𝑝𝑖‖ we obtain that the angles
at vertices 𝑝𝑖 and 𝑅𝑖𝑝𝑖 is 𝛽 = 𝜋−𝛼

2 . Consider triangle
∆(𝑝𝑖, 𝑅𝑖𝑝𝑖, 𝑞

*), and observe that the angle at vertex 𝑞* is
𝜋/2. It therefore holds that

‖𝑅𝑖𝑝𝑖 − 𝑝𝑖‖ =
‖𝑝𝑖 − 𝑞*‖ sin𝜋/2

sin 𝜋−𝛼
2

=
‖𝑝𝑖 − 𝑞*‖
sin 𝜋−𝛼

2

≤ ‖𝑝𝑖 − 𝑞*‖
sin 𝜋−𝜋/2

2

=
√

2 · ‖𝑝𝑖 − 𝑞*‖ ≤
√

2 · ‖𝑝𝑖 − 𝑞𝑖‖ ,

(23)

where the firsst derivation is by applying the law of sines
in triangle ∆(𝑝𝑖, 𝑅𝑖𝑝𝑖, 𝑞

*), and the last derivation is by the
definition of 𝑞*.

Figure 9: A triangle ∆(𝑝𝑖, 𝑅𝑖𝑝𝑖, 0⃗), a point 𝑞* =
proj(𝑝𝑖, sp(𝑅𝑖𝑝𝑖)) and a right triangle ∆(𝑝𝑖, 𝑞

*, 0⃗).

Hence, (13) holds for Case (iii) as

‖𝑅𝑗𝑝𝑖 − 𝑞𝑖‖ ≤ ‖𝑅𝑗𝑝𝑖 − 𝑝𝑖‖ + ‖𝑝𝑖 − 𝑞𝑖‖
≤ ‖𝑅𝑖𝑝𝑖 − 𝑝𝑖‖ + ‖𝑝𝑖 − 𝑞𝑖‖

≤ (1 +
√

2) · ‖𝑝𝑖 − 𝑞𝑖‖ ,
(24)

where the fist derivation holds by the triangle inequality, the
second derivation is by (12), and the last derivation holds
by 23.

Theorem 8 (Witness sets). Let 𝑃 = {𝑝1, · · · , 𝑝𝑛} and 𝑄 =
{𝑞1, · · · , 𝑞𝑛} be two ordered sets each of 𝑛 points in R𝑑.
Then, for every alignment (𝑅*, 𝑡*) and matching function
𝑚*, there exist 𝑃 ′ ⊆ 𝑃 and 𝑄′ ⊆ 𝑄 of size |𝑃 ′| = |𝑄′| =
𝑑 such that the output (𝑅, 𝑡) of the call ALIGN(𝑃 ′, 𝑄′) to
Algorithm 1 satisfies the following for every 𝑖 ∈ [𝑛]:⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚*(𝑖)

⃦⃦
≤ (1 +

√
2)𝑑 ·

⃦⃦
𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑚*(𝑖)

⃦⃦
Furthermore, (𝑅, 𝑡) is computed in 𝑂(𝑑3) time.

Proof. Let 𝑚* be a matching function. Without loss of gen-
erality assume that 𝑚*(𝑖) = 𝑖. Otherwise, shuffle the points
of 𝑄 according to 𝑚*.

Put (𝑅*, 𝑡*) ∈ ALIGNMENTS(𝑑). Without loss of gen-
erality assume that 𝑅* is the identity matrix and that 𝑡* is a
vector of zeros, otherwise rotate and translate the set 𝑃 by
(𝑅*, 𝑡*).

Recovering an approximated translation.

Claim 8.1. There is an index 𝑘 ∈ [𝑛] such that for 𝑡 =
𝑝𝑘 − 𝑞𝑘 we have that

‖𝑝𝑖 − 𝑡𝑘 − 𝑞𝑖‖ ≤ 2 · ‖𝑝𝑖 − 𝑞𝑖‖ ,

for every 𝑖 ∈ [𝑛].

Proof. For every 𝑖 ∈ [𝑛], let 𝑡𝑖 = 𝑝𝑖 − 𝑞𝑖 and let 𝑘 ∈
arg min𝑖∈[𝑛] ‖𝑡𝑖‖. Put 𝑖 ∈ [𝑛]. Since ‖𝑡𝑘‖ ≤ ‖𝑡𝑖‖ =



‖𝑝𝑖 − 𝑞𝑖‖, it holds that

‖𝑝𝑖 − 𝑡𝑘 − 𝑞𝑖‖ ≤ ‖𝑝𝑖 − 𝑡𝑘 − 𝑝𝑖‖ + ‖𝑝𝑖 − 𝑞𝑖‖
= ‖𝑡𝑘‖ + ‖𝑝𝑖 − 𝑞𝑖‖
≤ 2 · ‖𝑝𝑖 − 𝑞𝑖‖ ,

(25)

where the first derivation is by the triangle inequality.

Hence, there exists an index 𝑘 ∈ [𝑛] and a vector 𝑡 =
𝑝𝑘 − 𝑞𝑘 such that ‖𝑝𝑖 − 𝑡𝑘 − 𝑞𝑖‖ ≤ 2 · ‖𝑝𝑖 − 𝑞𝑖‖ for every
𝑖 ∈ [𝑛].

Observe that, by definition of 𝑡𝑘 in the above claim,
𝑝𝑘 − 𝑡𝑘 = 𝑞𝑘. Hence, 𝑝𝑘 and 𝑞𝑘 intersect after apply-
ing the translation 𝑡𝑘 to 𝑃 . This proves the existence of a
translation that aligns a corresponding pair of points from 𝑃
and 𝑄, and yields a provable constant factor approximation.
This translation can afterwards be easily recovered.

Recovering an approximated rotation. Let 𝑘 be the
index from Claim 13.2. As discussed above, 𝑝𝑘 and 𝑞𝑘 in-
tersect after applying 𝑡𝑘 to 𝑃 . Translating both sets by the
same translation does not change the pairwise distances.
Hence, we will translate both sets again such that 𝑞𝑘 and
𝑝𝑘 − 𝑡𝑘 intersect the origin. In other words, we redefine the
original (untranslated) 𝑃 and 𝑄 as follows:

𝑃 := {𝑝− 𝑡𝑘 − 𝑞𝑘 | 𝑝 ∈ 𝑃} , 𝑄 := {𝑞 − 𝑞𝑘 | 𝑞 ∈ 𝑄} .
(26)

We now prove the existence of some rotation matrix 𝑅,
which provides a constant factor approximation to the op-
timal rotation matrix, using an iterative scheme with 𝑑 − 1
iterations.

We denote by 𝑃 (0) = 𝑃 and 𝑄(0) = 𝑄, and for every
𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 we denote by 𝑝(0) = 𝑝 and 𝑞(0) = 𝑞.
We denote by 𝑝(𝑗) and 𝑞(𝑗) the points 𝑝 and 𝑞 after the 𝑗’th
iteration of the above 𝑑− 1 iterations, and by 𝑃 (𝑗) and 𝑄(𝑗)

the set 𝑃 and 𝑄 after the 𝑗’th iteration respectively.
At the 𝑗th iteration (𝑗 ∈ [𝑑− 1]) we apply the following

steps:

(i) We use Lemma 7 to prove the existence of an index 𝑖𝑗
and some rotation matrix 𝑅(𝑗) which aligns the direc-
tion vectors of at least one point 𝑝(𝑗−1)

𝑖𝑗
∈ 𝑃 (𝑗−1) to its

corresponding 𝑞
(𝑗−1)
𝑖𝑗

. Lemma 7 also guarantees that⃦⃦⃦
𝑅(𝑗)𝑝

(𝑗−1)
𝑖 − 𝑞

(𝑗−1)
𝑖

⃦⃦⃦
≤ (1+

√
2)
⃦⃦⃦
𝑝
(𝑗−1)
𝑖 − 𝑞

(𝑗−1)
𝑖

⃦⃦⃦
for every 𝑖 ∈ [𝑛], i.e., applying this rotation to the
points of the current 𝑃 (𝑗−1) does not increase each of
the pairwise distances

⃦⃦⃦
𝑝
(𝑗−1)
𝑖 − 𝑞

(𝑗−1)
𝑖

⃦⃦⃦
by more than

a multiplicative constant. Furthermore, it guarantees
that

⃦⃦⃦
𝑝
(𝑗−1)
𝑖𝑗

⃦⃦⃦
,
⃦⃦⃦
𝑞
(𝑗−1)
𝑖𝑗

⃦⃦⃦
̸= 0.

(ii) Let 𝜋(𝑗) be a (𝑑− 𝑗)-dimensional subspace orthogonal
to 𝑞

(𝑗−1)
𝑖𝑗

. We define

𝑝(𝑗) = proj(𝑅(𝑗)𝑝(𝑗−1), 𝜋(𝑗)) (27)

and
𝑞(𝑗) = proj(𝑞(𝑗−1), 𝜋(𝑗)). (28)

We continue to the (𝑗 + 1)’th iteration with the sets

𝑃 (𝑗) =
{︁
𝑝(𝑗) | 𝑝 ∈ 𝑃 ∖

{︀
𝑝𝑖1 , · · · , 𝑝𝑖𝑗

}︀}︁
and

𝑄(𝑗) =
{︁
𝑞(𝑗) | 𝑞 ∈ 𝑄 ∖

{︀
𝑞𝑖1 , · · · , 𝑞𝑖𝑗

}︀}︁
,

i.e., we rotate the points of 𝑃 (𝑗−1) and then project the
points of 𝑃 (𝑗−1) and 𝑄(𝑗−1), without the previously
aligned points, onto a subspace orthogonal to 𝑞

(𝑗−1)
𝑖𝑗

.

The projection at the end of each iteration ensures that
the points of 𝑃 (𝑗) and 𝑄(𝑗) after the (𝑗)’th iteration are
orthogonal to 𝑞

(0)
𝑖1

, · · · , 𝑞(𝑗−1)
𝑖𝑗

. Hence, the matrix 𝑅(𝑗+1)

from the (𝑗 + 1)’th iterations, which aligns 𝑝
(𝑗)
𝑖𝑗+1

and

𝑞
(𝑗)
𝑖𝑗+1

, does not affect the prior alignment of the pairs

(𝑝
(0)
𝑖1

, 𝑞
(0)
𝑖1

), · · · , (𝑝(𝑗−1)
𝑖𝑗

, 𝑞
(𝑗−1)
𝑖𝑗

).
After the above 𝑑− 1 iterations, we end up with a series

of 𝑑− 1 rotation matrices 𝑅(1), · · · , 𝑅(𝑑−1) and 𝑑− 1 cor-
responding pairs (𝑝𝑖1 , 𝑞𝑖1), · · · , (𝑝𝑖𝑑−1

, 𝑞𝑖𝑑−1
). Thos pairs

determine a unique rotation matrix 𝑅 = 𝑅(𝑑−1) · · ·𝑅(1)

since 𝑞
(0)
𝑖1

, · · · , 𝑞(𝑑−2)
𝑖𝑑−1

are 𝑑 − 1 orthogonal points. Given
those 𝑑 − 1 pairs, recovering this rotation matrix is trivial,
as implemented in Algorithm 1.

It is left to prove that the matrix 𝑅(𝑑−1) · · ·𝑅(1) yields a
constant factor approximation, as follows.

Claim 8.2. Put 𝑟 ∈ [𝑑− 1]. Let 𝑅′′ = 𝑅(𝑑−1) · · ·𝑅(𝑟) and
𝑗 = 𝑟 − 1. Then 𝑅′′ ∈ ℛ𝜋(𝑗) and

‖𝑅′′𝑝− 𝑞‖ ≤ (1 +
√

2)𝑑−𝑟 ‖𝑝− 𝑞‖

for every 𝑝 ∈ 𝑃 (𝑗) and its corresponding 𝑞 ∈ 𝑄(𝑗).

Proof. The proof is by induction on 𝑟 ∈ [𝑑− 1], where the
base case is 𝑟 = 𝑑− 1.

Base case for 𝑟 = 𝑑 − 1. By substituting 𝑃 (𝑑−2),
𝑄(𝑑−2), and 𝑅* = 𝐼 in Lemma 7 (i) and (ii), we obtain, as
required, that there is 𝑖1 ∈ [𝑛] and 𝑅′ ∈ ℛ𝜋(1) that satisfy
the following pair of properties.

(i) ‖𝑅′𝑝− 𝑞‖ ≤ (1 +
√

2) · ‖𝑝− 𝑞‖ for every 𝑝 ∈ 𝑃 (𝑑−2)

and its corresponding 𝑞 ∈ 𝑄(𝑑−2).

(ii) 𝑅′𝑝𝑖1 ∈ sp(𝑞𝑖1) and ‖𝑝𝑖1‖ , ‖𝑞𝑖1‖ ≠ 0.

Induction step for 𝑟 ∈ [𝑑 − 2]. We assume that
Claim 8.2 holds for 𝑟′ ∈ [𝑑 − 1] ∖ {1} and prove that
it holds for 𝑟 = 𝑟′ − 1, i.e., we assume that the matrix
𝑅′′ = 𝑅(𝑑−1) · · ·𝑅(𝑟′) satisfies that 𝑅′′ ∈ ℛ𝜋𝑟′−1 and

‖𝑅′′𝑝− 𝑞‖ ≤ (1 +
√

2)𝑑−𝑟′ ‖𝑝− 𝑞‖ , (29)



for every 𝑝 ∈ 𝑃 (𝑟′−1) = 𝑃 (𝑟) and its corresponding 𝑞 ∈
𝑄(𝑟′−1) = 𝑄(𝑟).

Recall that 𝑗 = 𝑟 − 1. We now prove that the matrix
𝑅′′𝑅(𝑟) = 𝑅(𝑑−1) · · ·𝑅(𝑟) satisfies that 𝑅′′𝑅(𝑟) ∈ ℛ𝜋(𝑗)

and ⃦⃦⃦
𝑅′′𝑅(𝑟)𝑝− 𝑞

⃦⃦⃦
≤ (1 +

√
2)𝑑−𝑟 ‖𝑝− 𝑞‖

for every 𝑝 ∈ 𝑃 (𝑗) and its corresponding 𝑞 ∈ 𝑄(𝑗).

By plugging 𝑃 (𝑗) and 𝑄(𝑗) in Lemma 7, we obtain that
there exists 𝑖𝑟 ∈ [𝑛] and 𝑅′ ∈ ℛ𝜋(𝑗) that satisfy the follow-
ing:

‖𝑅′𝑝− 𝑞‖ ≤ (1 +
√

2) · ‖𝑝− 𝑞‖ , (30)

for every 𝑝 ∈ 𝑃 (𝑗) and its corresponding 𝑞 ∈ 𝑄(𝑗).

Assume without loss of generality that 𝑞(𝑗)𝑖𝑟
spans the 𝑥-

axis, otherwise rotate the coordinates system.

Let 𝜋̂(𝑗) ⊂ 𝜋(𝑗) be a 𝑗-dimensional subspace that is or-
thogonal to the 𝑥-axis and passes through the origin. Let
𝜋
(𝑗)
𝑖 ⊂ 𝜋(𝑗) be a 𝑗-dimensional affine subspace that is or-

thogonal to the 𝑥-axis and passes through 𝑅′𝑝
(𝑗)
𝑖 and let

𝑞
(𝑗)
𝑖 = proj(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ); see Fig. 10 for visualization.

For every 𝑝 ∈ 𝜋
(𝑗)
𝑖 and rotation matrix 𝑅 ∈ ℛ𝜋̂(𝑗) , we

have

⃦⃦⃦
𝑅𝑝− 𝑞

(𝑗)
𝑖

⃦⃦⃦2
=
⃦⃦⃦
𝑅𝑝− 𝑞

(𝑗)
𝑖

⃦⃦⃦2
+
⃦⃦⃦
𝑞
(𝑗)
𝑖 − 𝑞

(𝑗)
𝑖

⃦⃦⃦2
=
⃦⃦⃦
𝑅𝑝− 𝑞

(𝑗)
𝑖

⃦⃦⃦2
+ dist(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 )2

=
⃦⃦⃦
proj(𝑅𝑝, 𝜋̂(𝑗)) − proj(𝑞

(𝑗)
𝑖 , 𝜋̂(𝑗))

⃦⃦⃦2
+ dist(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 )2

=
⃦⃦⃦
proj(𝑅𝑝, 𝜋̂(𝑗)) − proj(𝑞

(𝑗)
𝑖 , 𝜋̂(𝑗))

⃦⃦⃦2
+ dist(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 )2

=
⃦⃦⃦
𝑅proj(𝑝, 𝜋̂(𝑗)) − proj(𝑞

(𝑗)
𝑖 , 𝜋̂(𝑗))

⃦⃦⃦2
+ dist(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 )2,

(31)

where the first derivation holds by the Pythagorean theo-
rem, the second derivation holds by the definition of 𝑞(𝑗)𝑖 ,
the third derivation holds by combining that 𝑅𝑝, 𝑞

(𝑗)
𝑖 ∈ 𝜋

(𝑗)
𝑖

and that 𝜋(𝑗)
𝑖 and 𝜋̂(𝑗) are parallel, the fourth equality holds

since proj(𝑞
(𝑗)
𝑖 , 𝜋̂(𝑗)) = proj(𝑞

(𝑗)
𝑖 , 𝜋̂(𝑗)) and the last deriva-

tion holds by combining that 𝑅 ∈ ℛ𝜋̂(𝑗) and that 𝜋(𝑗)
𝑖 and

𝜋̂(𝑗) are parallel; see Fig. 10 for a visualization of the deriva-
tions in (31).

Figure 10: Illustration of the derivations in Eq. (31).

We now have that⃦⃦⃦
𝑅′′𝑅′𝑝

(𝑗)
𝑖 − 𝑞

(𝑗)
𝑖

⃦⃦⃦2
(32)

=
⃦⃦⃦
𝑅′′proj(𝑅′𝑝

(𝑗)
𝑖 , 𝜋̂(𝑗)) − proj(𝑞

(𝑗)
𝑖 , 𝜋̂(𝑗))

⃦⃦⃦2
+ dist2(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ) (33)

=
⃦⃦⃦
𝑅′′𝑝

(𝑟)
𝑖 − 𝑞

(𝑟)
𝑖

⃦⃦⃦2
+ dist2(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ) (34)

≤ (1 +
√

2)2(𝑑−𝑟−1) ·
⃦⃦⃦
𝑝
(𝑟)
𝑖 − 𝑞

(𝑟)
𝑖

⃦⃦⃦2
+ dist2(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 )

(35)

= (1 +
√

2)2(𝑑−𝑟−1) ·
⃦⃦⃦

proj(𝑅′𝑝
(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ) − proj(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ))

⃦⃦⃦2
+ (1 +

√
2)2(𝑑−𝑟−1) · dist2(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ) (36)

= (1 +
√

2)2(𝑑−𝑟−1) ·
⃦⃦⃦
𝑅′𝑝

(𝑗)
𝑖 − proj(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ))

⃦⃦⃦2
+ (1 +

√
2)2(𝑑−𝑟−1) · dist2(𝑞

(𝑗)
𝑖 , 𝜋

(𝑗)
𝑖 ) (37)

= (1 +
√

2)2(𝑑−𝑟−1) ·
⃦⃦⃦
𝑅′𝑝

(𝑗)
𝑖 − 𝑞𝑖

⃦⃦⃦2
(38)

≤ (1 +
√

2)2(𝑑−𝑟) · ‖𝑝𝑖 − 𝑞𝑖‖2 , (39)

where (33) holds by substituting 𝑝 = 𝑅′𝑝
(𝑗)
𝑖 and 𝑅 = 𝑅′′

in (31), (34) is by combining that 𝑗 = 𝑟 − 1 with the def-
initions of 𝑝(𝑟) and 𝑞(𝑟) in (27) and (28) respectively, (35)
holds by squaring both sides of (29), (36) holds by com-
bining that that 𝜋̂ and 𝜋𝑖 are parallel with definitions of
𝑝
(𝑟)
𝑖 and 𝑞

(𝑟)
𝑖 in (27) and (28) respectively, (37) holds since

𝑅𝑝
(𝑗)
𝑖 ∈ 𝜋𝑖, (38) is by the Pythagorean theorem, and (39)

holds by (30); see Fig. 10.
Let 𝑅 = 𝑅′′𝑅′. Hence, by (39), it follows that

‖𝑅𝑝𝑖 − 𝑞𝑖‖ ≤ (1 +
√

2)𝑑−𝑟 · ‖𝑝𝑖 − 𝑞𝑖‖ . (40)

By combining that 𝑅′ ∈ ℛ𝜋(𝑗) and 𝑅′′ ∈ ℛ𝜋̂(𝑟′−1) ⊆



ℛ𝜋(𝑗) , it also follows that

𝑅̂ ∈ ℛ𝜋(𝑗) . (41)

By applying the induction step above 𝑑−1 times, we end
up with a rotation matrix 𝑅 = 𝑅(𝑑−1) · · ·𝑅(1) that satisfies

‖𝑅𝑝− 𝑞‖ ≤ (1 +
√

2)𝑑−1 ‖𝑝− 𝑞‖ ,

for every 𝑝 ∈ 𝑃 and its corresponding 𝑞 ∈
𝑄. Furthermore, 𝑅 is guaranteed to align the
pairs (𝑝𝑖1 , 𝑞𝑖1), · · · , (𝑝𝑑−1

𝑖𝑑
, 𝑞

(𝑑−1)
𝑖𝑑

). Hence, 𝑅 satisfies
Claim 8.2.

Combining the (re-)definitions of 𝑃 and 𝑄 in (26) with
Claim 8.2 proves that

‖𝑅𝑝′ − 𝑞′‖ ≤ (1 +
√

2)𝑑−1 ‖𝑝′ − 𝑞′‖ , (42)

where 𝑝′ = 𝑝− 𝑡𝑘 − 𝑞𝑘 = 𝑝− 𝑝𝑘 and 𝑞′ = 𝑞− 𝑞𝑘 for every
𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄.

Combining the approximated translation and rota-
tion. Let 𝑘 ∈ [𝑛] and 𝑡𝑘 = 𝑝𝑘 − 𝑞𝑘 be the index and
approximated translation vector from Claim 8.1. Let 𝑅 be
the approximated rotation as in (8.2) for 𝑟 = 1, and let
𝑡 = 𝑅′𝑝𝑘 − 𝑞𝑘. Let 𝑝′ = 𝑝 − 𝑡𝑘 − 𝑞𝑘 = 𝑝 − 𝑝𝑘 and
𝑞′ = 𝑞 − 𝑞𝑘 for every 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄. Now, consider the
alignment (𝑅, 𝑡). Observe that for every 𝑖 ∈ [𝑛] we have

‖𝑅𝑝𝑖 − 𝑡− 𝑞𝑖‖ = ‖𝑅(𝑝𝑖 − 𝑝𝑘) + 𝑞𝑘 − 𝑞𝑖‖ = ‖𝑅𝑝′𝑖 − 𝑞′𝑖‖ .
(43)

Put 𝑖 ∈ [𝑛]. We now obtain that

‖𝑅𝑝𝑖 − 𝑡− 𝑞𝑖‖ = ‖𝑅𝑝′𝑖 − 𝑞′𝑖‖ (44)

≤ (1 +
√

2)𝑑−1 ‖𝑝′𝑖 − 𝑞′𝑖‖ (45)

= (1 +
√

2)𝑑−1 ‖𝑝𝑖 − 𝑡𝑘 − 𝑞𝑖‖ (46)

≤ (1 +
√

2)𝑑 ‖𝑝𝑖 − 𝑞𝑖‖ (47)

where (44) is by (43), (45) holds by (42), (46) holds simi-
larly to (43), and (47) is by Claim 13.2.

Hence, each pairwise distance ‖𝑅𝑝𝑖 − 𝑡− 𝑞𝑖‖ after ap-
plying alignment (𝑅, 𝑡) is a constant factor approxima-
tion to the original optimal pairwise distance ‖𝑝𝑖 − 𝑞𝑖‖ =
‖𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑖‖

Computing (𝑅, 𝑡). By the claims above, given the in-
dices 𝑖1, · · · , 𝑖𝑑−1, it is straight forward to compute the ro-
tation matrix 𝑅. Given 𝑅 and the index 𝑘, it is straight for-
ward to compute 𝑡 = 𝑅𝑝𝑘 − 𝑞𝑘. Algorithm 1 is a direct im-
plementation of the alignment (𝑅, 𝑡) above given two sets of
𝑑 corresponding points from 𝑃 and 𝑄. Hence, there exists a
subset 𝑃 ′ =

{︀
𝑝𝑘, 𝑝𝑖1 , · · · , 𝑝𝑖𝑑−1

}︀
⊆ 𝑃 and its correspond-

ing 𝑄′ =
{︀
𝑞𝑘, 𝑞𝑖1 , · · · , 𝑞𝑖𝑑−1

}︀
⊆ 𝑄 that, when plugged into

Algorithm 1, produces the desired approximated alignment
(𝑅, 𝑡) which satisfies⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚*(𝑖)

⃦⃦
= ‖𝑅𝑝𝑖 − 𝑡− 𝑞𝑖‖

≤ (1 +
√

2)𝑑 · ‖𝑝𝑖 − 𝑞𝑖‖

= (1 +
√

2)𝑑 ·
⃦⃦
𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑚*(𝑖)

⃦⃦
.

for every 𝑖 ∈ [𝑛]. Here, the first derivation is by our assump-
tion that 𝑚* is the identity function, the second derivation
is by (47), and the last derivation is by our assumption that
𝑅* is the identity matrix, 𝑡* is a zeros vector, and 𝑚* is the
identity function.

By step (i) of the iterative scheme above, Lemma 7 guar-
antees that

⃦⃦⃦
𝑝
(𝑗−1)
𝑖𝑗

⃦⃦⃦
,
⃦⃦⃦
𝑞
(𝑗−1)
𝑖𝑗

⃦⃦⃦
̸= 0. In other words, the

pair of aligned vectors at the 𝑗’th iteration are non-zero
vectors. Recall that the two sets have been initially trans-
lated such that 𝑝𝑘 and 𝑞𝑘 intersected the original. Then,
for every 𝑗 ∈ [𝑑 − 1], the 𝑗’th aligned pair has been pro-
jected 𝑗 − 1 times onto subspaces orthogonal to the prior
𝑗 − 1 aligned pairs. Hence, we obtain that the origi-
nal points 𝑝𝑘, 𝑝𝑖1 , · · · , 𝑝𝑖𝑑−1

must span R𝑑, and similarly
𝑞𝑘, 𝑞𝑖1 , · · · , 𝑞𝑖𝑑−1

must also span R𝑑.
Given some 𝑑 indices 𝑘, 𝑖1, · · · , 𝑖𝑑−1 where

𝑝𝑘, 𝑝𝑖1 , · · · , 𝑝𝑖𝑑−1
and 𝑞𝑘, 𝑞𝑖1 , · · · , 𝑞𝑖𝑑−1

each span
R𝑑, Algorithm 1 computes the unique alignment (𝑅, 𝑡) for
which 𝑝𝑘 intersects with 𝑞𝑘, 𝑝𝑖1 aligns with 𝑞𝑖1 , 𝑝𝑖2 aligns
with 𝑞𝑖2 after the projection onto the hyperplane orthogonal
to 𝑞𝑖1 , and so on. If there is no such sets of points which
span R𝑑, then the original data is entirely contained in a
subspace of dimension smaller than 𝑑. In such case, we
can simply reduce the dimensionality of the input sets, then
apply the algorithm to the data of smaller dimension.

The running time of Algorithm 1 is 𝑂(𝑑3) since there
are at most 𝑑 iterations, where each iteration takes 𝑂(𝑑2)
time to execute.

B. Generalization
In what follows is a formal definition of an 𝑟-log-

Lipschitz function, which is a generalization of the defini-
tion in [11] from 1 to 𝑛 dimensional functions. Intuitively,
an 𝑟-log-Lipschitz function is a function whose derivative
may be large but cannot increase too rapidly (in a rate that
depends on 𝑟). For a higher dimensional function, we de-
mand the previous constraint over every dimension individ-
ually.

For every pair of vectors 𝑣 = (𝑣1, · · · , 𝑣𝑛) and 𝑢 =
(𝑢1, · · · , 𝑢𝑛) in R𝑛 we denote 𝑣 ≤ 𝑢 if 𝑣𝑖 ≤ 𝑢𝑖 for ev-
ery 𝑖 ∈ [𝑛]. Similarly, 𝑓 : R𝑛 → [0,∞) is non-decreasing
if 𝑓(𝑣) ≤ 𝑓(𝑢) for every 𝑣 ≤ 𝑢 ∈ R𝑑.

Definition 9 (Log-Lipschitz function). Let 𝑛 ≥ 1, 𝑟 > 0
and let ℎ : [0,∞)𝑛 → [0,∞) be a non-decreasing function.



Then ℎ(𝑥) is 𝑟-log-Lipschitz if for every 𝑥 ∈ [0,∞) and
𝑐 > 0 we have that ℎ(𝑐𝑥) ≤ 𝑐𝑟ℎ(𝑥). For 𝑛 ≥ 2, a function
ℎ : [0,∞)𝑛 → [0,∞) is called a The parameter 𝑟 is called
the log-Lipschitz constant.

The following observation states that if we find an align-
ment (𝑅, 𝑡) ∈ ALIGNMENTS(𝑑) that approximates the
function 𝐷 for every input element, then it also approxi-
mates the more complex function cost as defined in Defini-
tion 2.

Observation 10 (Observation 5 in [19]). Let 𝑃 =
{𝑝1, · · · , 𝑝𝑛} and 𝑄 = {𝑞1, · · · , 𝑞𝑛} and cost be as defined
in Definition 2. Let (𝑅*, 𝑡*), (𝑅, 𝑡) ∈ ALIGNMENTS(𝑑),
let 𝑚* be a correspondence function, and let 𝑐 ≥ 1. If
𝐷
(︀
𝑅𝑝𝑖 − 𝑡, 𝑞𝑚*(𝑖)

)︀
≤ 𝑐 · 𝐷

(︀
𝑅*𝑝𝑖 − 𝑡*, 𝑞𝑚*(𝑖)

)︀
for every

𝑖 ∈ [𝑛], then

cost
(︀
𝑃[𝑚*], 𝑄, (𝑅, 𝑡)

)︀
≤ 𝑐𝑟𝑠 · cost

(︀
𝑃[𝑚*], 𝑄, (𝑅*, 𝑡*)

)︀
.

C. Approximation for the Alignment Problem
Theorem 11 (Theorem 3). Let 𝑃 and 𝑄 be two ordered sets
of 𝑛 points in R𝑑, 𝛾 ∈ Ω(𝑛𝑑), 𝑧 > 0, and 𝑤 = 𝑑|

1
𝑧−

1
2 |. Let

cost, 𝑟 and 𝑠 be as defined in Definition 2 for 𝐷(𝑝, 𝑞) =
‖𝑝− 𝑞‖𝑧 . Let (𝑅, 𝑡) be the output of a call to APPROX-
ALIGNMENT(𝑃,𝑄, 𝛾, cost); See Algorithm 2. Then,

cost(𝑃,𝑄, (𝑅, 𝑡)) ≤ 𝑤𝑟𝑠·(1+
√

2)𝑑𝑟𝑠· min
(𝑅′,𝑡′)

cost(𝑃,𝑄, (𝑅′, 𝑡′)),

where the minimum is over every (𝑅′, 𝑡′) ∈ ALIGNMENTS.
Moreover, (𝑅, 𝑡) is computed in 𝑛𝑂(𝑑) time.

Proof. Let (𝑅*, 𝑡*) ∈ min(𝑅,𝑡) cost(𝑃,𝑄, (𝑅, 𝑡)) be the
optimal alignment for the cost at hand.

Theorem 8 proves the existence of a set 𝑃 ′ ⊆ 𝑃 and a
corresponding set 𝑄′ ⊆ 𝑄 of size |𝑃 ′| = |𝑄′| = 𝑑, such
that the output (𝑅, 𝑡) of the call ALIGN(𝑃 ′, 𝑄′) to Algo-
rithm 1 satisfies the following for every 𝑖 ∈ [𝑛]:

‖𝑅𝑝𝑖 − 𝑡− 𝑞𝑖‖ ≤ (1 +
√

2)𝑑 · ‖𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑖‖ . (48)

Here, every point 𝑝𝑖 ∈ 𝑃 is assumed to correspond to 𝑞𝑖 ∈
𝑄 since the matching function is given.

By (48) and since the ℓ2-norm of every vector in R𝑑 is
approximated up to a multiplicative factor of 𝑤 = 𝑑|

1
𝑧−

1
2 |

by its ℓ𝑧-norm, for every 𝑖 ∈ [𝑛] we have that

‖𝑅𝑝𝑖 − 𝑡− 𝑞𝑖‖𝑧 ≤ 𝑤(1 +
√

2)𝑑 · ‖𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑖‖𝑧 .

Combining the last equation, the definition of cost and
𝐷, and Observation 10 yields that

cost(𝑃,𝑄, (𝑅, 𝑡)) ≤ 𝑤𝑟𝑠 · (1 +
√

2)𝑑𝑟𝑠 · cost(𝑃,𝑄, (𝑅*, 𝑡*))

= 𝑤𝑟𝑠 · (1 +
√

2)𝑑𝑟𝑠 · min
(𝑅,𝑡)

cost(𝑃,𝑄, (𝑅, 𝑡)).

To recover the above (𝑅, 𝑡), we must recover the subsets
𝑃 ′ and 𝑄′ and plug them into Algorithm 1. This can be
done via exhaustive search over all 𝜃(𝑛𝑑) possible subsets
of 𝑃 of size 𝑑. Every such subset immediately dictates the
corresponding subset 𝑄′ ⊆ 𝑄 since the correspondence is
given.

Observe that Algorithm 2 iterates over 𝛾 possible dis-
tinct corresponding subsets 𝑃 ′, 𝑄′ of size 𝑑 from 𝑃 and 𝑞,
plugs 𝑃 ′, 𝑄′ into Algorithm 1, and returns the alignment
which minimizes the given cost function (over all 𝛾 candi-
date alignments). Hence, plugging 𝛾 ∈ Ω(𝑛𝑑) into Algo-
rithm 2 yields an exhaustive search over all possible subsets
from 𝑃 and 𝑄. Combining the fact that one of the 𝛾 com-
puted alignments gives our desired approximation with the
fact that Algorithm 2 returns the alignment with the small-
est cost yields that the output is guaranteed to satisfy the
requirements of Theorem 11.

The running time of Algorithm 2 is 𝑛𝑂(𝑑) since we make
𝑂(𝑛𝑑) calls to Algorithm 1, each call takes 𝑂(𝑑3) time by
Theorem 8.

D. Run-Time Improvements

Figure 11: Corresponding pairs
(𝑝1, 𝑞1) and (𝑝2, 𝑞2), where
‖𝑝1‖ > ‖𝑝2‖. 𝑅1 and 𝑅2 are
rotations that align (𝑝1, 𝑞1) and
(𝑝2, 𝑞2) respectively. The cost
of applying 𝑅2 while damaging
(𝑝1, 𝑞1) is bigger than the cost
of applying 𝑅1 while damaging
(𝑝2, 𝑞2).

The following claim proves a weak version of the trian-
gle inequality, for the cost functions we define in Defini-
tion 2.

Claim 11.1 (Weak triangle inequality.). Let 𝑧 > 0 be a
constant. Let ℓ be an 𝑟-log-Lipschitz functions and D : R𝑑×
R𝑑 → [0,∞) be a function such that D(𝑝, 𝑞) = ‖𝑝− 𝑞‖𝑧 .
Then, for every 𝑝, 𝑞, 𝑣 ∈ R𝑑,

ℓ (𝐷(𝑝, 𝑞)) ≤ 𝜌𝑐𝑟 (ℓ (𝐷(𝑝, 𝑣)) + ℓ (𝐷(𝑣, 𝑞))) ,

where 𝜌 = max
{︀

2𝑟−1, 1
}︀

and 𝑐 = 𝑑|
1
𝑧−

1
2 |.

Proof. The case of 𝑧 = 2 immediately holds by substituting
𝐷̃ = ℓ and dist = 𝐷 in Lemma 2.1 of [11]. The case 𝑧 = 2
can be trivially extended to any constant 𝑧 > 0 by com-
bining the following property of vector norms: For every
vector 𝑢 ∈ R𝑑 and constant 𝑎 > 0 it holds that{︃

‖𝑢‖2 ≤ ‖𝑢‖𝑎 ≤ 𝑐 ‖𝑢‖2 if 𝑎 ∈ (0, 2]

‖𝑢‖𝑎 ≤ ‖𝑢‖2 ≤ 𝑐 ‖𝑢‖𝑎 if 𝑎 > 2
.



In what follows, for simplicity, we denote by
cost(𝑃,𝑄,𝑅) the cost cost(𝑃,𝑄, (𝑅, 0⃗)) and by
cost(𝑃,𝑄) = cost(𝑃,𝑄, (𝐼𝑑, 0⃗)).

The following lemma proves that there is an index 𝑗 ∈
[𝑛] that can be recovered via non-uniform sampling, and a
rotation matrix 𝑅′ that aligns the directions of 𝑝𝑗 and 𝑞𝑗 ,
and with high probability also approximates the total initial
cost up to some constant factor.

Lemma 12. Put 𝜏 ∈ [𝑑] and 𝑧 > 0. Let 𝜋 be an 𝜏 -
dimensional subspace of R𝑑, and 𝑃 = {𝑝1, · · · , 𝑝𝑛} ⊂ 𝜋
and 𝑄 = {𝑞1, · · · , 𝑞𝑛} ⊂ 𝜋 be two ordered sets of points.
Let cost be as defined in Definition 2 for 𝑓 = ‖𝑣‖1, an
𝑟-log-Lipschitz function ℓ and 𝐷(𝑝, 𝑞) = ‖𝑝− 𝑞‖𝑧 . Let
𝑅* ∈ SO(𝑑) and let 𝑗 ∈ [𝑛] be an index sampled randomly,
where 𝑗 = 𝑖 with probability 𝑤𝑖 = ‖𝑝𝑖‖𝑟∑︀

𝑗∈[𝑛]‖𝑝𝑗‖𝑟 if ‖𝑞𝑖‖ ̸= 0

and 𝑤𝑖 = 0 otherwise. Then there is 𝑅′ ∈ ℛ𝜋 that satisfy
the following properties:

(i) 𝑅′𝑝𝑗 ∈ sp(𝑞𝑗).

(ii) cost(𝑃,𝑄, (𝑅′, 0⃗)) ≤ 6𝜌2𝑐2𝑟·cost(𝑃,𝑄, (𝑅*, 0⃗)) with
probability at least 1/2, where 𝜌 = max

{︀
2𝑟−1, 1

}︀
and 𝑐 = 𝑑|

1
𝑧−

1
2 |.

Proof. Without loss of generality assume that 𝑅* is the
identity matrix and that 𝜋 is spanned by 𝑒1, · · · , 𝑒𝜏 , oth-
erwise rotate the set 𝑃 of points and rotate the coordi-
nates system respectively. Furthermore, we remove all
pairs (𝑝𝑖, 𝑞𝑖) of corresponding points from 𝑃 and 𝑄 where
‖𝑝𝑖‖ = 0 or ‖𝑞𝑖‖ = 0. The distance 𝐷(𝑝𝑖, 𝑞𝑖) between such
pairs is unaffected by a rotation of 𝑝𝑖, i.e., 𝐷(𝑅𝑝𝑖, 𝑞𝑖) =
𝐷(𝑝𝑖, 𝑞𝑖) for every rotation matrix 𝑅. We can therefore ig-
nore such pairs. The sampling probabilities of other pairs
will not be affected by removing such (𝑝𝑖, 𝑞𝑖) since 𝑤𝑖 = 0
by definition.

For every 𝑖 ∈ [𝑛], let 𝑅𝑖 ∈ ℛsp({𝑝𝑖,𝑞𝑖}) be a rotation
matrix that satisfies 𝑞𝑖 ∈ sp(𝑅𝑖𝑝𝑖), i.e., aligns the directions
of the vectors 𝑝𝑖 and 𝑞𝑖 by a rotation in the 2-dimensional
subspace (plane) that those two vectors span. If there is
more than one such rotation matrix, pick the one that rotates
𝑝𝑖 with the smallest angle of rotation.

Now, by the definition of 𝑅𝑗 we have that

ℓ(𝐷(𝑅𝑗𝑝𝑗 , 𝑞𝑗)) ≤ ℓ(𝐷(𝑝𝑗 , 𝑞𝑗)) (49)

for every 𝑗 ∈ [𝑛]. Therefore, the following holds

𝑛∑︁
𝑗=1

ℓ(𝐷(𝑅𝑗𝑝𝑗 , 𝑝𝑗)) ≤
𝑛∑︁

𝑗=1

𝜌𝑐𝑟(ℓ(𝐷(𝑅𝑗𝑝𝑗 , 𝑞𝑗)) + ℓ(𝐷(𝑞𝑗 , 𝑝𝑗)))

≤ 2𝜌𝑐𝑟
𝑛∑︁

𝑗=1

ℓ(𝐷(𝑞𝑗 , 𝑝𝑗))

= 2𝜌𝑐𝑟cost(𝑃,𝑄),

(50)

where the first derivation is by Claim 11.1 and the second
derivation is by (49).

We now prove that if we sample an index 𝑗 ∈ [𝑛] accord-
ing to the distribution 𝑤 = (𝑤1, · · · , 𝑤𝑛), then the expected
cost cost(𝑃,𝑄,𝑅𝑗) between the points of 𝑃 after a rotation
by 𝑅𝑗 and their correspond points in 𝑄 is at most a constant
times the original cost cost(𝑃,𝑄). We observe that

∑︁
𝑗∈[𝑛]

𝑤𝑗 · cost(𝑃,𝑄,𝑅𝑗) =
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

ℓ(𝐷(𝑅𝑗𝑝𝑖, 𝑞𝑖)

(51)

≤
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

2𝜌𝑐𝑟 (ℓ(𝐷(𝑅𝑗𝑝𝑖, 𝑝𝑖)) + ℓ(𝐷(𝑝𝑖, 𝑞𝑖)))

(52)

= 𝜌𝑐𝑟
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

ℓ(𝐷(𝑅𝑗𝑝𝑖, 𝑝𝑖)) +
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

ℓ(𝐷(𝑝𝑖, 𝑞𝑖))

= 𝜌𝑐𝑟
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

ℓ(𝐷(𝑅𝑗𝑝𝑖, 𝑝𝑖)) +

𝑛∑︁
𝑖=1

ℓ(𝐷(𝑝𝑖, 𝑞𝑖))

(53)

= 𝜌𝑐𝑟
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

ℓ(𝐷(𝑅𝑗𝑝𝑖, 𝑝𝑖)) + cost(𝑃,𝑄), (54)

where (52) is by substituting in Claim 11.1 and (53) holds
since 𝑤 is a distribution vector.



We now bound the leftmost term of (54).

∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

ℓ(𝐷(𝑅𝑗𝑝𝑖, 𝑝𝑖))

=
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

ℓ

(︂
‖𝑝𝑖‖𝐷

(︂
𝑅𝑗𝑝𝑖
‖𝑝𝑖‖

,
𝑝𝑖
‖𝑝𝑖‖

)︂)︂
(55)

≤
∑︁
𝑗∈[𝑛]

𝑤𝑗

𝑛∑︁
𝑖=1

‖𝑝𝑖‖𝑟 ℓ
(︂
𝐷

(︂
𝑅𝑗𝑝𝑖
‖𝑝𝑖‖

,
𝑝𝑖

‖𝑝𝑖‖

)︂)︂
(56)

=
∑︁
𝑗∈[𝑛]

‖𝑝𝑗‖𝑟∑︀
𝑘∈[𝑛] ‖𝑝𝑘‖

𝑟

𝑛∑︁
𝑖=1

‖𝑝𝑖‖𝑟 ℓ
(︂
𝐷

(︂
𝑅𝑗𝑝𝑖
‖𝑝𝑖‖

,
𝑝𝑖
‖𝑝𝑖‖

)︂)︂
(57)

≤
∑︁
𝑗∈[𝑛]

‖𝑝𝑗‖𝑟∑︀
𝑘∈[𝑛] ‖𝑝𝑘‖

𝑟

𝑛∑︁
𝑖=1

‖𝑝𝑖‖𝑟 ℓ
(︂
𝐷

(︂
𝑅𝑗𝑝𝑗
‖𝑝𝑗‖

,
𝑝𝑗
‖𝑝𝑗‖

)︂)︂
(58)

=
∑︁
𝑗∈[𝑛]

‖𝑝𝑗‖𝑟 ℓ
(︂
𝐷

(︂
𝑅𝑗𝑝𝑗
‖𝑝𝑗‖

,
𝑝𝑗
‖𝑝𝑗‖

)︂)︂
≤
∑︁
𝑗∈[𝑛]

ℓ (𝐷 (𝑅𝑗𝑝𝑗 , 𝑝𝑗)) (59)

= 2𝜌𝑐𝑟cost(𝑃,𝑄) (60)

where (55) holds since 𝐷 is simply a norm function, (56)
holds since ℓ is an 𝑟-log Lipschitz function, (57) is simply
by substituting the value of 𝑤𝑗 , (58) holds by Claim 6.1, 59
holds since 𝐷 is a norm and ℓ is an 𝑟-log Lipschitz function,
and (60) is by (50).

Combining (60) and (54) yields that∑︁
𝑗∈[𝑛]

𝑤𝑗 · cost(𝑃,𝑄,𝑅𝑗) ≤ 3𝜌2𝑐2𝑟 · cost(𝑃,𝑄). (61)

For a random variable 𝑋 , a positive constant 𝑎 > 0, the
Markov inequality states that

𝑃𝑟(𝑋 ≥ 𝑎) ≤ 𝐸(𝑋)

𝑎
, (62)

where 𝐸(𝑋) is the expectation of 𝑋 .
Define the random variable 𝑋 := cost(𝑃,𝑄,𝑅𝑗), where

the randomness is over the choice of the index 𝑗 ∈ [𝑛], and
let 𝑎 = 6𝜌2𝑐2𝑟 · cost(𝑃,𝑄). By (61), the expectation of 𝑋
is 𝐸(𝑋) = 3𝜌2𝑐2𝑟 · cost(𝑃,𝑄). Plugging into the Markov
equality (62) yields that

cost(𝑃,𝑄,𝑅𝑗) ≤ 6𝜌2𝑐2𝑟 · cost(𝑃,𝑄).

with probability at least 1/2.

The following lemma proves the correctness of Algo-
rithm 3.

Theorem 13 (Theorem 4). Let 𝑃 and 𝑄 be two ordered sets
of 𝑛 points in R𝑑 and let 𝑧 > 0. Let cost be as defined in
Definition 2 for 𝑓 = ‖𝑣‖1, some 𝑟-log Lipschitz function
ℓ and 𝐷(𝑝, 𝑞) = ‖𝑝− 𝑞‖𝑧 . Let (𝑅, 𝑡) be an output of a
call to PROB-ALIGN(𝑃,𝑄, 𝑟); see Algorithm 3. Then, with
probability at least 1

2𝑑
,

cost(𝑃,𝑄, (𝑅, 𝑡)) ≤ 𝜎· min
(𝑅′,𝑡′)∈ALIGNMENTS(𝑑)

cost(𝑃,𝑄, (𝑅′, 𝑡′)),

for a constant 𝜎 that depends on 𝑑 and 𝑟. Furthermore,
(𝑅, 𝑡) is computed in 𝑂(𝑛𝑑3) time.

Proof. Let

(𝑅*, 𝑡*) ∈ arg min
(𝑅,𝑡)∈ALIGNMENTS(𝑑)

cost(𝑃,𝑄, (𝑅, 𝑡))

be the optimal alignment, and let 𝜌 = max
{︀

2𝑟−1, 1
}︀

and

𝑐 = 𝑑|
1
𝑧−

1
2 |. Without loss of generality assume that 𝑅*

is the identity matrix and 𝑡* is a zeros vector. Otherwise
rotate and translate the set 𝑃 by (𝑅*, 𝑡*). In other words,
we assume the set 𝑃 is already optimally aligned to 𝑄.

Let OPT be the minimal cost, i.e.,

OPT = cost(𝑃,𝑄, (𝐼𝑑, 0⃗)) =

𝑛∑︁
𝑖=1

ℓ (𝐷(𝑝𝑖, 𝑞𝑖)) . (63)

Recovering an approximated translation. We first aim
to recover some approximated translation.

Claim 13.1. There are at least 𝑛/2 corresponding pairs
(𝑝𝑖, 𝑞𝑖) whose cost in the optimal alignment is smaller than
2OPT

𝑛 , i.e.,

ℓ (𝐷(𝑝𝑖, 𝑞𝑖)) ≤
2OPT

𝑛
.

Proof. Falsely assume that there are less than 𝑛/2 such
pairs. This implies that there are at least 𝑛/2 pairs which
satisfy

ℓ (𝐷(𝑝𝑖, 𝑞𝑖)) >
2OPT

𝑛
.

The cost of those (at least) 𝑛/2 pairs would thus be greater
than 𝑛

2 · 2OPT
𝑛 = OPT, which contradicts the definition of

OPT as the cost of the whole 𝑛 pairs.

The following claim states that translating the set 𝑃 ,
from its optimal position, such that 𝑝𝑘 intersects 𝑞𝑘 for a
randomly selected index 𝑘 ∈ [𝑛], yields a constant factor
approximation to the current (optimal) cost, with high prob-
ability.

Claim 13.2. Let 𝜌 = max
{︀

2𝑟−1, 1
}︀

and 𝑐 = 𝑑|
1
𝑧−

1
2 |.

Then, there is an index 𝑘 ∈ [𝑛] such that, with probabil-
ity at least 1/2,

cost(𝑃,𝑄, (𝐼𝑑, 𝑝𝑘 − 𝑞𝑘)) ≤ 3𝜌𝑐𝑟 · OPT.



Proof. Let 𝑘 ∈ [𝑛] be an index selected uniformly at ran-
dom. Then,

cost(𝑃,𝑄, (𝐼𝑑, (𝑝𝑘 − 𝑞𝑘))) =

𝑛∑︁
𝑖=1

ℓ (𝐷(𝑝𝑖 − (𝑝𝑘 − 𝑞𝑘), 𝑞𝑖))

(64)

≤ 𝜌𝑐𝑟

(︃
𝑛∑︁

𝑖=1

(ℓ (𝐷(𝑝𝑖 − (𝑝𝑘 − 𝑞𝑘), 𝑝𝑖)) + ℓ (𝐷(𝑝𝑖, 𝑞𝑖)))

)︃
(65)

= 𝜌𝑐𝑟

(︃
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑝𝑘, 𝑞𝑘)) +

𝑛∑︁
𝑖=1

ℓ (𝐷(𝑝𝑖, 𝑞𝑖))

)︃

≤ 𝜌𝑐𝑟

(︃
𝑛∑︁

𝑖=1

2OPT

𝑛
+

𝑛∑︁
𝑖=1

ℓ (𝐷(𝑝𝑖, 𝑞𝑖))

)︃
(66)

= 𝜌𝑐𝑟

(︃
2OPT +

𝑛∑︁
𝑖=1

ℓ (𝐷(𝑝𝑖, 𝑞𝑖))

)︃
= 3𝜌𝑐𝑟 · OPT, (67)

where (64) is by the definition of cost, (65) is by the weak
triangle inequality in Claim 11.1, (66) holds with probabil-
ity at least 1/2 by combining Claim 13.1 with the random
pick of the index 𝑘, and (67) holds by the definition of OPT
in (63).

Therefore, a translation of 𝑃 by 𝑡𝑘 = 𝑝𝑗 − 𝑞𝑗 where
𝑘 ∈ [𝑛] is selected uniformly at random yields a constant
factor approximation to OPT.

Observe that, by definition of 𝑡𝑘 in the above claim,
𝑝𝑘 − 𝑡𝑘 = 𝑞𝑘. Hence, 𝑝𝑘 and 𝑞𝑘 intersect after applying
the translation 𝑡𝑘 to 𝑃 . This proves the existence of a trans-
lation that aligns a corresponding pair of points from 𝑃 and
𝑄, and yields a provable constant factor approximation to
OPT. This translation can afterwards be easily recovered.

Recovering an approximated rotation. Let 𝑘 be the
index from Claim 13.2. As discussed above, 𝑝𝑘 and 𝑞𝑘 in-
tersect after applying 𝑡𝑘 to 𝑃 . Translating both sets by the
same translation does not change the pairwise distances.
Hence, we will translate both sets again such that 𝑞𝑘 and
𝑝𝑘 − 𝑡𝑘 intersect the origin. In other words, we redefine the
original (untranslated) 𝑃 and 𝑄 as follows:

𝑃 := {𝑝− 𝑡𝑘 − 𝑞𝑘 | 𝑝 ∈ 𝑃} , 𝑄 := {𝑞 − 𝑞𝑘 | 𝑞 ∈ 𝑄} .
(68)

We now aim prove the existence of a rotation matrix that:
(i) can be afterwards easily recovered, and (ii) when applied
to 𝑃 yields a constant factor approximation to the cost of the
initial (optimal) alignment. After recovering such a rotation
matrix, we will rotate the set 𝑃 , and then undo the transla-
tion applied above by translating both sets by −𝑞𝑘.

Hence, we now aim to find a rotation matrix 𝑅̂ such
that cost(𝑃,𝑄, (𝑅̂, 0⃗)) ≤ 𝜎 · cost(𝑃,𝑄, (𝑅*, 0⃗)) for some

constant 𝜎 > 0. Observe that 𝑅* can be any rotation ma-
trix For simplicity of notation, we denote by cost(𝑃,𝑄,𝑅)
the cost cost(𝑃,𝑄, (𝑅, 0⃗)), and by cost(𝑃,𝑄) the cost
cost(𝑃,𝑄, (𝐼𝑑, 0⃗)).

Let 𝑗1 ∈ [𝑛] be an index sampled randomly, where
𝑗 = 𝑖 with probability 𝑤𝑖 = ‖𝑝𝑖‖𝑟∑︀

𝑗∈[𝑛]‖𝑝𝑗‖𝑟 if ‖𝑞𝑖‖ ≠ 0

and 𝑤𝑖 = 0 otherwise. Observe that the probabilities 𝑤𝑖

are independent of 𝑅* (which is assumed to be the identity
matrix) since a rotation matrix does not change the norms
of the points, i.e., ‖𝑅*𝑝𝑖‖ = ‖𝑝𝑖‖ for every 𝑖 ∈ [𝑛]. By
Lemma 12, there exists a matrix 𝑅1 that aligns the direc-
tion vectors of 𝑝𝑗1 and 𝑞𝑗1 , and with probability at least 1/2
satisfies:

cost(𝑃,𝑄,𝑅1) ≤ 6𝜌2𝑐2𝑟 · cost(𝑃,𝑄). (69)

However, there might be an infinite set 𝐴1 of such rotation
matrices which align the direction vectors of 𝑝𝑗1 and 𝑞𝑗1 .
Let 𝑅1 ∈ 𝐴1 be an arbitrary such rotation matrix.

Let 𝑃 ′ be the set 𝑃 after applying 𝑅1, and let 𝑃 ′ and
𝑄̂ be the sets 𝑃 ′ and 𝑄 respectively after projecting their
points onto the hyperplane orthogonal to 𝑞𝑗1 i.e.,

𝑃 ′ = {𝑝′𝑖 := 𝑅1𝑝𝑖 | 𝑖 ∈ [𝑛]} ,

𝑃 ′ =
{︀
𝑝𝑖 := 𝑊𝑊𝑇 𝑝′𝑖 | 𝑖 ∈ [𝑛]

}︀
,

and
𝑄̂ =

{︀
𝑞𝑖 := 𝑊𝑊𝑇 𝑞𝑖 | 𝑖 ∈ [𝑛]

}︀
,

where 𝑊 ∈ R𝑑×(𝑑−1) is an orthogonal matrix whose
columns span the hyperplane 𝐻 orthogonal to 𝑞𝑗1 .

Let 𝑗2 ∈ [𝑛] be an index sampled randomly, where 𝑗 = 𝑖

with probability 𝑤𝑖 = ‖𝑝𝑖‖𝑟∑︀
𝑗∈[𝑛]‖𝑝𝑗‖𝑟 if ‖𝑞𝑖‖ ̸= 0 and 𝑤𝑖 = 0

otherwise. By applying Lemma 12 again on using 𝑃 ′ and
𝑄̂, there is a matrix 𝑅2 that aligns the direction vectors of
𝑝𝑗2 and 𝑞𝑗2 , and with probability at least 1/2 satisfies:

cost(𝑃 ′, 𝑄̂, 𝑅2) ≤ 6𝜌2𝑐2𝑟 · cost(𝑃 ′, 𝑄̂, 𝐼𝑑). (70)

However, again, there might be an infinite set 𝐴2 of such
rotation matrices which align the direction vectors of 𝑝𝑗2
and 𝑞𝑗2 . Let 𝑅2 ∈ 𝐴2 be an arbitrary such rotation matrix.

We now prove the following claims: (i) the cost
cost(𝑃 ′, 𝑄,𝑅2) of applying the rotation matrix 𝑅2 to the
(unprojected) sets 𝑃 ′ and 𝑄 will approximate the cost
cost(𝑃 ′, 𝑄, 𝐼𝑑), (ii): the choice of 𝑗2 is independent of the
choice of 𝑅1, and (iii) the vectors 𝑞𝑗1 and 𝑞𝑗2 are orthogo-
nal.

Claim 13.3. It holds that

cost(𝑃,𝑄,𝑅2𝑅1) ≤ 12𝜌4𝑐5𝑟cost(𝑃,𝑄,𝑅1). (71)



Proof. Recall that 𝑃 ′ = {𝑝′1, · · · , 𝑝′𝑛}. Consider the hy-
perplane 𝐻 orthogonal to 𝑞𝑗1 (the hyperplane the points are
projected on after the first step). Let 𝐻𝑖 be a hyperplane par-
allel to 𝐻 but passes through 𝑞𝑖. Let 𝑣𝑖 = proj(𝑅2𝑝

′
𝑖, 𝐻𝑖)

be the projection of 𝑅2𝑝
′
𝑖 onto the hyperplane 𝐻𝑖 for every

𝑖 ∈ [𝑛].
Observe that, by construction, the rotation matrix 𝑅2 ro-

tates every point 𝑝′𝑖 around the rotation axis 𝑞𝑗1 , which is
orthogonal to 𝐻𝑖. Therefore, the distance between 𝑅2𝑝

′
𝑖 to

its (orthogonal) projection onto 𝐻𝑖 equals the distance be-
tween 𝑝′𝑖 and its (orthogonal) projection onto 𝐻𝑖. Formally,

𝐷(𝑅2𝑝
′
𝑖,proj(𝑅2𝑝

′
𝑖, 𝐻𝑖)) = 𝐷(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖)). (72)

Let 𝑣𝑖 = proj(𝑅2𝑝
′
𝑖, 𝐻𝑖) be the projection of 𝑅2𝑝

′
𝑖 onto

the hyperplane 𝐻𝑖 for every 𝑖 ∈ [𝑛]. We now have that

cost(𝑃 ′, 𝑄,𝑅2) =

𝑛∑︁
𝑖=1

ℓ (𝐷(𝑅2𝑝
′
𝑖, 𝑞𝑖)) (73)

≤ 𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑅2𝑝
′
𝑖, 𝑣𝑖)) + 𝜌𝑐𝑟

𝑛∑︁
𝑖=1

ℓ (𝐷(𝑣𝑖, 𝑞𝑖)) (74)

= 𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖))) + 𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑣𝑖, 𝑞𝑖))

(75)

where (73) is by the definition of cost, (74) is by the weak
triangle inequality in Claim 11.1, and (75) is by combin-
ing (72) with the definition of 𝑣𝑖.

We now bound the rightmost term of (75) as follows:

𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑣𝑖, 𝑞𝑖))

= 𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(proj(𝑣𝑖, 𝐻),proj(𝑞𝑖, 𝐻))) (76)

= 𝜌𝑐𝑟 · cost(𝑃 ′, 𝑄̂, 𝑅2) (77)

≤ 6𝜌3𝑐3𝑟 · cost(𝑃 ′, 𝑄̂, 𝐼𝑑) (78)

= 6𝜌3𝑐3𝑟 ·
𝑛∑︁

𝑖=1

ℓ (𝐷(proj(𝑝′𝑖, 𝐻),proj(𝑞𝑖, 𝐻))) (79)

= 6𝜌3𝑐3𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(proj(𝑝′𝑖, 𝐻𝑖), 𝑞𝑖)) , (80)

where (76) holds by combining that 𝑣𝑖, 𝑞𝑖 ∈ 𝐻𝑖 and that 𝐻𝑖

and 𝐻 are two parallel hyperplanes, (77) holds by the defi-
nitions of 𝑣𝑖 and 𝑅2, (78) is by (70), (79) is by the definition
of 𝑃 ′ and 𝑄̂, and (80) holds by combining that 𝑞𝑖 ∈ 𝐻𝑖 and
that 𝐻 and 𝐻𝑖 are parallel.

Now, consider the triangle ∆(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖), 𝑞𝑖).
This triangle is a right triangle since 𝑞𝑖 ∈ 𝐻𝑖.
Hence, 𝐷2(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖)) ≤ 𝐷2(𝑝′𝑖, 𝑞𝑖) and

𝐷2(proj(𝑝′𝑖, 𝐻𝑖), 𝑞𝑖) ≤ 𝐷2(𝑝′𝑖, 𝑞𝑖). By the properties
of vector norms and since ℓ is an 𝑟-log-Lipschitz function,
we obtain that

ℓ (𝐷(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖))) + ℓ (𝐷(proj(𝑝′𝑖, 𝐻𝑖), 𝑞𝑖))

≤ 2𝑐𝑟ℓ (𝐷(𝑝′𝑖, 𝑞𝑖)) .
(81)

Combining the above yields that

cost(𝑃,𝑄,𝑅2𝑅1) = cost(𝑃 ′, 𝑄,𝑅2) (82)

≤ 𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖))) + 𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑣𝑖, 𝑞𝑖))

(83)

≤ 𝜌𝑐𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖)))

+ 6𝜌4𝑐4𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(proj(𝑝′𝑖, 𝐻𝑖), 𝑞𝑖)) (84)

≤ 6𝜌4𝑐4𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(𝑝′𝑖,proj(𝑝′𝑖, 𝐻𝑖)))

+ 6𝜌4𝑐4𝑟
𝑛∑︁

𝑖=1

ℓ (𝐷(proj(𝑝′𝑖, 𝐻𝑖), 𝑞𝑖))

≤ 12𝜌4𝑐5𝑟
𝑛∑︁

𝑖=1

(ℓ (𝐷(𝑝′𝑖, 𝑞𝑖))) (85)

= 12𝜌4𝑐5𝑟 · cost(𝑃 ′, 𝑄, 𝐼𝑑) (86)

= 12𝜌4𝑐5𝑟 · cost(𝑃,𝑄,𝑅1), (87)

where (82) is by the definition of 𝑃 , (83) is by (75), (84) is
by (80), (85) is by (81), and (87) is by the definition of cost.

Claim 13.4. The choice of 𝑗2 is independent of the choice
of 𝑅1.

Proof. The choice of 𝑗2 depends on the ℓ2 norms ‖𝑝𝑖‖ of
the points in 𝑃 ′. Observe that the rotation matrices in the
set 𝐴1 rotate the set 𝑃 around the axis 𝑞𝑗1 , and that the
projection matrix 𝑊𝑗1𝑊

𝑇
𝑗1

projects any point onto the hy-
perplane orthogonal to 𝑞𝑗1 . Therefore, for any two matrices
𝑀1,𝑀2 ∈ 𝐴1, the norms of the vectors 𝑊𝑊𝑇𝑀1𝑝 and
𝑊𝑊𝑇𝑀2𝑝 are the same, for every 𝑝 ∈ 𝑃 ′. Hence, the
distribution from which 𝑗2 is drawn is identical for any two
matrices in 𝐴1.

Claim 13.5. The vectors 𝑞𝑗1 and 𝑞𝑗2 are orthogonal.

Proof. By construction, the vector 𝑞𝑗2 is obtained by a pro-
jection of 𝑞𝑗2 ∈ 𝑄 onto the subspace orthogonal to 𝑞𝑗1 .
Therefore, they are orthogonal.



The above claims prove the existence of 2 indices, 𝑗1
and 𝑗2, and two rotation matrices 𝑅1 and 𝑅2 that align the
direction vectors of 𝑝𝑗1 with 𝑞𝑗1 and 𝑝𝑗2 with 𝑞𝑗2 respec-
tively. The choice of 𝑗1 and 𝑗2 is independent of any initial
rotation 𝑅* of 𝑃 and independent of the choice of 𝑅1 re-
spectively. Consider the rotation matrix 𝑅̂ = 𝑅2𝑅1. Since
𝑞𝑗1 and 𝑞𝑗2 are orthogonal, then 𝑅̂ can simultaneously align
both pairs of vectors, i.e., 𝑅̂ satisfies both constraints. By
combining (71) and (69) we obtain that with probability at
least 1/4,

cost(𝑃,𝑄, 𝑅̂) ≤ (12𝜌4𝑐5𝑟)2cost(𝑃,𝑄).

Repeating the above steps 𝑑 − 1 times yields that there
is a set of 𝑑 − 1 indices 𝑗1, · · · , 𝑗𝑑−1, corresponding rota-
tion matrices 𝑅(1), · · · , 𝑅(𝑑−1), and a rotation matrix 𝑅′ =
𝑅𝑑−1 · · ·𝑅1 that satisfies

(i) 𝑅′ aligns the direction vectors of 𝑝𝑗1 and 𝑞𝑗1 , i.e., 𝑅′𝑝𝑗1 ∈
sp(𝑞𝑗1).

(ii) For every 𝑖 ∈ {2, · · · , 𝑑− 1}, 𝑅′ aligns the direction vec-
tors of 𝑝𝑗𝑖 and 𝑞𝑗𝑖 after their projection onto the hyperplane
orthogonal to 𝑞𝑗1 , then onto the hyperplane orthogonal to
𝑞𝑗2 , and so on until the projection onto the hyperplane or-
thogonal to 𝑞𝑗𝑖−1

.

(iii) The indices 𝑗1, · · · , 𝑗𝑑−1 are independent of the initial 𝑅*,
and also independent of the arbitrary choice of rotation ma-
trices throughout the 𝑑− 1 steps.

(iv) Identically to 71, for every 𝑘 ∈ {2, · · · , 𝑑− 1} we can
prove that with probability at least 1/2,

cost(𝑃,𝑄,𝑅𝑘 · · ·𝑅1) ≤ 12𝜌4𝑐5𝑟·cost(𝑃,𝑄,𝑅𝑘−1 · · ·𝑅1).

By combining the last inequality for every 𝑘 ∈
{1, · · · , 𝑑− 1}, we obtain that with probability at least
1/2𝑑−1,

cost(𝑃,𝑄,𝑅′) ≤ (12𝜌4𝑐5𝑟)𝑑−1cost(𝑃,𝑄). (88)

Combining the (re-)definitions of 𝑃 and 𝑄 in (68)
with (88) proves that with probability at least 1/2𝑑−1 we
have that

cost(𝑃 ′, 𝑄′, 𝑅′) ≤ (12𝜌4𝑐5𝑟)𝑑−1cost(𝑃 ′, 𝑄′) (89)

where 𝑃 ′ = {𝑝− 𝑝𝑘 | 𝑝 ∈ 𝑃} and 𝑄′ = {𝑞 − 𝑞𝑘 | 𝑞 ∈ 𝑄}.
Furthermore, since the pair of aligned direction vectors

at the 𝑖’th step are orthogonal to all the previous 𝑖−1 aligned
direction vectors by construction, the obtained set of 𝑑 − 1
constraints on the output rotation are Linearly independent.
They thus determine a single rotation matrix 𝑅′, which can
be recovered regardless of the initial 𝑅*, or 𝑅1, · · · , 𝑅𝑑−1.
We can thus recover those indices via simple exhaustive

search, and then recover the rotation matrix 𝑅′ using those
indices and the constraints they determine.

Combining the approximated translation and rota-
tion. Let 𝑡𝑘 be the approximated translation vector from
Claim 13.2. Let 𝑅′ be the approximated rotation as in (88)
and let 𝑡′ = 𝑅′𝑝𝑘 − 𝑞𝑘. Now, consider the alignment
(𝑅′, 𝑡′). Observe that

𝑅′𝑝𝑖 − 𝑡′ − 𝑞𝑖 = 𝑅′(𝑝𝑖 − 𝑝𝑘) + 𝑞𝑘 − 𝑞𝑖 = 𝑅′𝑝′𝑖 − 𝑞′𝑖.

Hence, we have that

cost(𝑃,𝑄, (𝑅′, 𝑡′)) = cost(𝑃 ′, 𝑄′, (𝑅′, 0⃗)). (90)

We now obtain that

cost(𝑃,𝑄, (𝑅′, 𝑡′)) = cost(𝑃 ′, 𝑄′, (𝑅′, 0⃗)) (91)

≤ (12𝜌4𝑐5𝑟)𝑑−1cost(𝑃 ′, 𝑄′, (𝐼𝑑, 0⃗))
(92)

= (12𝜌4𝑐5𝑟)𝑑−1cost(𝑃,𝑄, (𝐼𝑑, 𝑡
′))
(93)

≤ (36𝜌5𝑐6𝑟)𝑑−1 · OPT (94)

≤ (36𝜌5𝑐6𝑟)𝑑−1cost(𝑃,𝑄, (𝐼𝑑, 0⃗))
(95)

where (91) is by (90), (92) holds with probability at least
1/2𝑑−1 by (89), (93) holds similarly to (90), and (94) holds
with probability at least 1/2 by combining the definition of
𝑡′ with Claim 13.2, and (95) is by the definition of OPT.

Hence, the cost cost(𝑃,𝑄, (𝑅′, 𝑡′)) of the alignment
(𝑅′, 𝑡′) is a constant factor approximation to the original
optimal cost cost(𝑃,𝑄) = cost(𝑃,𝑄, (𝑅*, 𝑡*)), with prob-
ability at least 1/2𝑑.

Computing (𝑅′, 𝑡′). By the claims above, 𝑡′ can be re-
covered as 𝑡′ = 𝑝𝑘 − 𝑞𝑘 with a randomly sampled index
𝑘 ∈ [𝑛]. Similarly, 𝑅′ can be recovered from a randomly
sampled set of indices 𝑗1, · · · , 𝑗𝑑−1. Algorithm 3 is an
implementation of the scheme above. It computes the set
of indices 𝑘, 𝑗1, · · · , 𝑗𝑑−1 discussed above, and returns the
alignment that they determine.

The algorithm contains at most 𝑑 iterations. Each itera-
tion takes at most 𝑂(𝑛𝑑2) time. Therefore, the total running
time is 𝑂(𝑛𝑑3).

E. Approximation for the Registration Prob-
lem

Theorem 14 (Theorem 5). Let 𝑃 = {𝑝1, · · · , 𝑝𝑛}, 𝑄 =
{𝑞1, · · · , 𝑞𝑛} be two ordered sets of 𝑛 points in R𝑑, 𝛾 ∈
Ω(𝑛2𝑑), 𝑧 > 0, and 𝑤 = 𝑑|

1
𝑧−

1
2 |. Let cost and 𝑟

be as in Definition 2 for 𝐷 = ‖𝑝− 𝑞‖𝑧 and 𝑓(𝑣) =



‖𝑣‖1. Let (𝑅̃, 𝑡, 𝑚̃) be the output of a call to ALIGN-AND-
MATCH(𝑃,𝑄, 𝛾, cost); See Algorithm 4. Then,

cost
(︁
𝑃[𝑚̃], 𝑄, (𝑅̃, 𝑡)

)︁
≤ 𝑤𝑟(1 +

√
2)𝑑𝑟 · min

(𝑅,𝑡,𝑚)
cost

(︀
𝑃[𝑚], 𝑄, (𝑅, 𝑡)

)︀
,

(96)

where the minimum is over every alignment (𝑅, 𝑡) and per-
mutation 𝑚. Moreover, (𝑅̃, 𝑡, 𝑚̃) is computed in 𝑛𝑂(𝑑) time.

Proof. Let (𝑅*, 𝑡*,𝑚*) ∈ arg min
(𝑅,𝑡,𝑚)

cost(𝑃[𝑚], 𝑄, (𝑅, 𝑡)).

Theorem 8 proves the existence of a set 𝑃 ′ ⊆ 𝑃 and a
corresponding set 𝑄′ ⊆ 𝑄 of size |𝑃 ′| = |𝑄′| = 𝑑, such
that the output (𝑅, 𝑡) of the call ALIGN(𝑃 ′, 𝑄′) to Algo-
rithm 1 satisfies the following for every 𝑖 ∈ [𝑛]:⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚*(𝑖)

⃦⃦
≤ (1 +

√
2)𝑑 ·

⃦⃦
𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑚*(𝑖)

⃦⃦
.

(97)
By (97) and since the ℓ2-norm of every vector in R𝑑 is

approximated up to a multiplicative factor of 𝑤 = 𝑑|
1
𝑧−

1
2 |

by its ℓ𝑧-norm, for every 𝑖 ∈ [𝑛] we have that⃦⃦
𝑅𝑝𝑖 − 𝑡− 𝑞𝑚*(𝑖)

⃦⃦
𝑧
≤ 𝑤(1+

√
2)𝑑·

⃦⃦
𝑅*𝑝𝑖 − 𝑡* − 𝑞𝑚*(𝑖)

⃦⃦
𝑧
.

Combining the last equation, the definition of cost and
𝐷, and Observation 10 yields that

cost(𝑃[𝑚*], 𝑄, (𝑅, 𝑡)) ≤ 𝑤𝑟·(1+
√

2)𝑑𝑟·cost(𝑃[𝑚*], 𝑄, (𝑅*, 𝑡*)).
(98)

To recover the above (𝑅, 𝑡), we must recover the subsets
𝑃 ′ and 𝑄′ and plug them into Algorithm 1. This will be
done via exhaustive search over all 𝜃(𝑛𝑑) possible subsets
from 𝑃 of size 𝑑 as well as all 𝜃(𝑛𝑑) possible subsets of size
𝑑 from 𝑄.

However, to pick the alignment (𝑅′, 𝑡′) with the smallest
cost among all candidate alignments computed above (via
many calls to Algorithm 1), we must evaluate its cost. To
do so, we must first recover the correspondence between
𝑃 and 𝑄. Fortunately, given an alignment (𝑅′, 𝑡′), solv-
ing for the optimal correspondence is now trivial: We can
apply (𝑅′, 𝑡′) to the set 𝑃 , and then compute, for every
transformed point in 𝑃 , its nearest neighbor in 𝑄. This is
the best possible correspondence for the given cost function
and the specific alignment (𝑅′, 𝑡′). Recovering such cor-
respondence was made possible since we have successfully
decoupled the two problems of recovering an alignment and
recovering a correspondence function.

Let NN(𝑃,𝑄, (𝑅′, 𝑡′)) be the nearest neighbor match-
ing between the points of 𝑃 after applying (𝑅′, 𝑡′), and the
points of 𝑄.

Recall that the alignment (𝑅, 𝑡) satisfies (98). Let 𝑚 =
NN(𝑃,𝑄, (𝑅, 𝑡)). Since 𝑚 is an optimal matching function
for 𝑃 , 𝑄, the alignment (𝑅, 𝑡), and the function cost, it
satisfies that

cost
(︀
𝑃[𝑚], 𝑄, (𝑅, 𝑡)

)︀
≤ cost

(︀
𝑃[𝑚*], 𝑄, (𝑅, 𝑡)

)︀
. (99)

By plugging 𝛾 ∈ Ω(𝑛2𝑑) into Algorithm 4, we are
guaranteed, by Line 2, to iterate over all possible subsets
𝑃 ′ ⊆ 𝑃 and 𝑄′ ⊆ 𝑄 of size 𝑑. For every such subset,
the alignment (𝑅′, 𝑡′) := APPROX-ALIGNMENT(𝑃 ′, 𝑄′) is
computed at Line 4. The neighbour matching NN(𝑅′, 𝑡′) of
(𝑅′, 𝑡′) is then computed, and the triplet (𝑅′, 𝑡′, NN(𝑅′, 𝑡′))
is added to the set 𝑀 at Line 5. By iterating over all pos-
sible 𝑃 ′ and 𝑄′, we are guaranteed to recover the desired
alignment (𝑅, 𝑡) above. Hence, we are also guaranteed that
(𝑅, 𝑡,𝑚) ∈ 𝑀 .

Algorithm 4 then computes, at Line 6, the triplet
(𝑅̃, 𝑡, 𝑚̃) ∈ 𝑀 which yields the smallest value for the cost
function at hand. Combining (𝑅, 𝑡,𝑚) ∈ 𝑀 with the defi-
nition of (𝑅̃, 𝑡, 𝑚̃) yields

cost
(︁
𝑃[𝑚̃], 𝑄, (𝑅̃, 𝑡)

)︁
≤ cost

(︀
𝑃[𝑚], 𝑄, (𝑅, 𝑡)

)︀
. (100)

Hence, the following holds

cost
(︁
𝑃[𝑚̃], 𝑄, (𝑅̃, 𝑡)

)︁
≤ cost

(︀
𝑃[𝑚], 𝑄, (𝑅, 𝑡)

)︀
≤ cost

(︀
𝑃[𝑚*], 𝑄, (𝑅, 𝑡)

)︀
≤ 𝑤𝑟(1 +

√
2)𝑑𝑟 · cost

(︀
𝑃[𝑚*], 𝑄, (𝑅*, 𝑡*)

)︀
,

where the first derivation holds by (100), the second deriva-
tion holds by (99) and the third derivation is by (98). Fur-
thermore, the running time of the algorithm is 𝑛𝑂(𝑑) since
there are 𝑛𝑂(𝑑) iterations, each iteration takes time inde-
pendent of 𝑛 (𝑂(𝑑3) time). Afterwards, we compute the
optimal matching NN(𝑃,𝑄, (𝑅, 𝑡)) for every (𝑅, 𝑡) ∈ 𝑀 .
There are 𝑛𝑂(𝑑) alignments in 𝑀 , and computing such
an optimal matching for each alignment takes 𝑛𝑂(1) time.
Hence, the total running time is 𝑛𝑂(𝑑).

Constrained correspondence. Assume we wish to
solve the registration problem under constraints on the cor-
respondence function, for example that the correspondence
function is a bijection function. Then the computation of
the set 𝑀 remains unchanged. Afterwards, the only change
required is to compute, for every (𝑅′, 𝑡′) ∈ 𝑀 , the optimal
bijective function between the transformed 𝑃 and 𝑄, rather
than the nearest neighbor correspondence.

Kuhn and Harold suggested in [24] an algorithm that
given the pairwise distances (fitting loss) between two sets
of 𝑛 elements 𝑃 and 𝑄, it finds an assignment for every
𝑝 ∈ 𝑃 to an element 𝑞 ∈ 𝑄 that minimizes the sum of dis-
tances between every assigned pair. This algorithm takes
𝑂(𝑛3) time. We can use this algorithm to compute an op-
timal matching function 𝑚̂(𝑃,𝑄, (𝑅′, 𝑡′), cost) for every
(𝑅′, 𝑡′) ∈ 𝑀 in Line 5 of Algorithm 4. The proof above
remains unchanged except that the optimal correspondence
function 𝑚* is assumed to be a bijection.



Figure 12: Asian Dragon model with 𝜎2 = 0.01 noise
variance. The SSD cost function was used in our algo-
rithms. The test was executed on the AWS platform, on a
c5a.8xlarge machine with 32 CPUs.

Figure 13: Robustness to outliers using the Asian Dragon
model. 𝑛 = 800 was used. Noise with variance 𝜎2 =
1 was added to 𝑘 percentage of the points in 𝑃 , which
are considered as outliers. The SSD with M-estimator
min{‖𝑝− 𝑞‖2 , 0.2} was used in our algorithms. The com-
putational time was roughly constant for each method for
all tested 𝑘 values, and is presented in Fig. 12 at 𝑛 = 800.

F. Additional Experiments
In this section, we provide additional experimental re-

sults. We have conducted the same experiment depicted in
Section 3.2, but using different models; see Fig 12-15.

Figure 14: Robustness to outliers using the SUN3D 76-
1studyroom1 dataset [48]. 𝑛 = 800 was used. Noise
with variance 𝜎2 = 1 was added to 𝑘 percentage of the
points in 𝑃 , which are considered as outliers. The SSD
with M-estimator min{‖𝑝− 𝑞‖2 , 0.2} was used in our al-
gorithms. The computational time was roughly constant
for each method for all tested 𝑘 values, and is presented
in Fig. 12 at 𝑛 = 800.

Figure 15: Robustness to outliers using the SUN3D
hv_corridor1_1 dataset [48]. 𝑛 = 800 was used. Noise
with variance 𝜎2 = 1 was added to 𝑘 percentage of the
points in 𝑃 , which are considered as outliers. The SSD
with M-estimator min{‖𝑝− 𝑞‖2 , 0.2} was used in our al-
gorithms. The computational time was roughly constant
for each method for all tested 𝑘 values, and is presented
in Fig. 12 at 𝑛 = 800.


