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A. Datasets

We provide a brief overview of the NAVERLABS Indoor Localization dataset [4, 1] and the specific properties that make
it desirable as a dense depth estimation in crowded indoor dynamic scenes. The NAVERLABS dataset consists of various
video sequences captured on five different floors in a department store and a metro station. Among these places, we selected
two places, the metro station B1 (MS) and the department store B1 (Dept), to build a benchmark for depth estimation in
crowded indoor dynamic scenes. The MS dataset is one of the most crowded dataset in the NAVERLABS dataset. We also
chose the Dept dataset because it has totally different environments. In the NAVERLABS dataset, a mapping robot utilizes
two 16-channel LiDAR sensors, six RGB cameras and four smartphone cameras. We only utilized images collected from six
RGB cameras. LiDAR sensors are only used for generating groundtruth depth maps for evaluation. As the NAVERLABS
dataset consists of the split of 60735 images for training and 835 images for testing in MS, and 25083 images for training
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and 443 images for testing in Dept, we adopt this dataset for dense depth estimation in crowded indoor dynamic scenes.

Dataset Environment Location Dynamic Video #Images Metric Annotation
(a) Indoor datasets

NYUv2 [29] Indoor Small Rooms v 407K v RGB-D
ScanNet [6] Indoor Small Rooms v 2.5M v RGB-D
Stanford [2] Indoor Small Rooms v 72K v Laser
Matterport3D [3] Indoor Small Rooms v 194K v Laser
7 scenes [28] Indoor Small Rooms v 26K v Laser
InLoc [31] Indoor Univ. bldg. v 10K v Laser
Baidu [30] Indoor Mall v v 682 v Laser
(b) Internet Image collections

DIW [5] Indoor & Outdoor Diverse v 495K Ordinal
MegaDepth [17] Outdoor Diverse 130K StM
ReDWeb [33] Indoor & Outdoor Diverse v N 3600 Stereo
WSVD [32] Indoor & Outdoor Diverse v v 150K Stereo
MC [16] Indoor & Outdoor Diverse v v 136K

(c) NAVERLABS

Dept [4, 1] Indoor Mall v v 25K v Laser
MS [4, 1] Indoor Mall & Turnstiles v v 60K v Laser

Table 1: (a) Most large-scale indoor datasets do not have dynamic scenes except for Baidu [
from the internet do not contain metric 3D models. To train depth estimation algorithms in crowded indoor dynamic scenes,
a dataset must contain three properties: dynamic, metric and large amount of images. Different from previous datasets (a)

1. (b) All datasets collected

and (b), NAVERLABS contains large amounts of dynamic scenes with the metric 3D model in indoor environments.

*These two authors contributed equally.



Dense depth estimation in crowded indoor dynamic scenes is a significant task for Robotics and AR applications. To
the best of our knowledge, however, it is difficult to find large-scale public datasets for dense depth estimation in crowded
indoor dynamic scenes. In Table 1 (a), most indoor datasets [29, 6, 2, 3, 28, 31, 30] are captured from small collections
of room, office, and university buildings. They cover only a restricted scale of spaces and have similar design and internal
structures. Additionally, existing indoor datasets do not provide scenes containing multiple dynamic objects such as moving
people except for the Baidu dataset [30]. The Baidu dataset [30] collected from a shopping mall has dynamic scenes with
3.75% crowd density. However, Baidu contains only 689 images for training. In Table 1 (b), other works [5, 17, 33, 32, 16]
explore the use of internet photo collections to train the depth estimation models for dynamic scenes. These datasets contain
a large number of dynamic scenes, but they do not provide metric depth. They often have relative depth obtained by either
stereo matching or COLMAP [26, 27], or ordinal depth relation from manual annotations. Thus, we are not able to evaluate
our algorithms using metric depth maps for internet images.

B. Evaluation Metrics

The depth value is represented in the metric scale (m). Following [7], we evaluate our method using the following
metrics: absolute relative difference (Abs Rel), square relative difference (Sq Rel), root mean squared error (RMSE), RMSE
in logarithmic scale (RMSE log), and §; meaning the percentage of predicted pixels for which the relative error is less than a
threshold .

C. Implementation Details

We implement our method in PyTorch [20] and conduct all experiments on a V100 GPU. We train our network with a
batch size of 8 images with size 1024 x768 for 20 epochs. We use the following set of weights for each loss term in the loss
function: Aq = 0.001, Ay, =1, A, =0.3, Ay = 0.1, and A, = 0.001. We utilize the Adam [13] with 8; = 0.9 and 5> = 0.999.
We use an initial learning rate of 10~* for the first 10 epochs and halve it for the remaining 10 epochs. We use human masks
to eliminate the points in human regions to reduce the noise on projected depth maps.
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Figure 1: The network architecture of our proposed method. The red block, green block, and blue block are an RGB encoder,
a depth encoder, and a decoder. We concatenate a projected depth map and a binary mask, which indicates where the
projected depth values exist. The convolutional filter is defined as (filter size, stride size, input channel, output channel).
The RGB encoder adopts a ResNet 34 [1 1] backbone pretrained with ImageNet [24], and the depth encoder consists of two
convolutional blocks and three residual blocks.



D. DnD with Localization

DnD network requires a monocular image and the corresponding reprojected depth map derived from the 3D model with
the camera position. In order to verify the applicability, it is necessary to demonstrate both pose estimation and depth map
projection about the new test images. Thus, we implement the whole pipeline of DnD, including mapping and localization
process using Kapture [19], which is the visual localization toolbox. As a mapping procedure, the sparse 3D model is
reconstructed via Structure-from-Motion (SfM) [26] in the set of training images. When a test image is given, image retrieval
(AP-GeM [22]) is performed to obtain top k ranked images in the database of the 3D model, which can consider covisibility
with the images and estimate a more accurate camera pose. The local feature extractor (R2D2 [23]) produces 2D-2D matches
between the test image and top-ranked database images, resulting in 2D-3D matches between the test image and the 3D
model. Perspective-n-Point (PnP [15]) problem with Random Sample Consensus (RANSAC [9]) is solved in these matching
points and consequently yields the predicted camera pose. With the visible 3D points from the test image and the estimated
pose, we can obtain the reprojected depth map and activate our DnD framework. We assign 5 for the top &, and the results of
the MS dataset are reported in Fig. 2 and Table 2.

F+B / F ( Lower is better ) F+B / F ( Higher is better )
Method ‘ 3D Model ‘ Abs Rel SqRel  RMSE  RMSE log 5125 51052 51955
DnD ‘ StM + MVS ‘ 0.189/0.240 0.20/0.16 1.76/2.44 0.084/0.133 ‘ 0.806/0.677 0.881/0.798 0.919/0.856
DnD ‘ StM ‘ 0.194/0.249 0.17/0.15 1.85/2.56 0.092/0.141 ‘ 0.77470.638 0.874/0.785 0.918/0.850

Table 2: The performance with or without Kapture [19] in the MS dataset. The upper line in the table shows the results of
the camera poses, which are used in reconstruction of the 3D model (SfM + MVS). The lower line in the table indicates
the performance of the whole pipeline including visual localization under the sparse 3D model from SfM (without MVS).
Although the SfM point clouds are highly sparse and visual localization methods has pose uncertainty, the comparable results
show the robustness of our framework.

Prediction Projected Depth Prediction

DnD with Kapture ————
Figure 2: DnD (2-3 columns) estimates depth from the image and the projected depth map, which is derived from the 3D
model. Since DnD with Kapture [19] (4-5 columns) exploit the sparse 3D model from SfM, the projected depth maps are also
highly sparse, and the background details of the estimated depth maps decrease. However, the overall qualities, especially
moving people, are predicted robustly. (low I @ high; grey means empty depth values.)

E. Robustness to Orientation Errors

We assume a scenario that the camera pose is inaccurate and projected depth maps are not aligned well with the current
image. This scenario is common in real-world applications because the visual localization system often computes uncertain
poses, especially in dynamic scenes where the moving people cover a large part of the image. Therefore, we validate that our
method is robust to orientation errors caused by visual localization algorithms. We add noises « to ground truth poses and
then project depth maps from the incomplete 3D model by using noisy poses. « is set to 2°, 5°, and 10°. Following the [25],



we report the quantitative evaluation with different noises for pose values. We perform this experiment on the MS dataset
because it is highly crowded than the Dept dataset.

F+B / F ( Lower is better ) F+B / F ( Higher is better )

Method ‘ Orientation Error |\ 'pel ~ SqRel ~ RMSE  RMSE log ‘ 8125 81,952 81,250

DnD ‘ - ‘ 0.189/0.240 0.20/0.16 1.76/2.44 0.084/0.133 ‘ 0.806/0.677 0.881/0.798 0.919/0.856
2° 0.205/0.246 0.24/0.17 1.82/2.46 0.089/0.135 | 0.786/0.666 0.876/0.796 0.917/0.855
DnD 5° 0.207/0.246 0.23/0.17 1.83/2.46 0.090/0.135 | 0.779/0.666 0.875/0.796 0.917/0.855
10° 0.211/0.245 024/0.17 1.84/2.46 0.091/0.135 | 0.773/0.666 0.873/0.795 0.916/0.855

Table 3: Experimental evaluations of our proposed method’s robustness to orientation errors.

F. Qualitative Results of Depth Prediction Corresponding Sparse Depth Points
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Figure 3: Qualitative results of depth prediction corresponding to the number of uniform-sampled input depth points (refer
the Fig. 6 (a) in the manuscript). The first and the second columns show the results of the MS dataset, and the third and the
fourth columns indicate the Dept dataset. As the number of sampled points decreases, some details of the static background
disappear. However, the overall quality of depth estimation results is maintained robustly. All color maps use the jet color
map (low I @ high; grey means empty depth values.)



G. Ablation Study

Method F+B / F ( Lower is better ) F+B / F ( Higher is better )

Abs Rel Sq Rel RMSE RMSE log 01.25 01.952 01.253
DnD (L, only) 0.289/0.388 0.47/0.60 2.60/3.24 0.109/0.148 | 0.663/0.564 0.837/0.759 0.911/0.847
DnD w/o FSC,NSC || 0.240/0.355 042/0.71 2.51/3.63 0.091/0.133 | 0.741/0.642 0.877/0.806 0.929/0.868
DnD w/o NSC 0.226/0.335 0.37/0.72 239/3.19 0.087/0.130 | 0.753/0.635 0.885/0.810 0.930/0.878
DnD w/o FSC 0.230/0.272 0.31/031 2.44/3.15 0.092/0.127 | 0.730/0.644 0.871/0.814 0.927/0.880
DnD (full) 0.213/0.250 0.32/0.30 2.36/3.04 0.084/0.116 | 0.761/0.707 0.889/0.836 0.932/0.886

Table 4: Contributions of our proposed modules to the evaluation results on the Dept dataset. F means the evaluation results
on depth values in the human regions, and F+B indicates the evaluation results on depth values over the entire scene. The
median scaling is applied to DnD (L, only) for absolute scale depth prediction.

H. Qualitative Results of Depth Completion Algorithm

Colmap

Figure 4: As we metioned in the manuscript, we show the qualitative results of DepthComple [18]. We adopt an early-fusion
encoder-decoder network from [18] combined with normalized convolution layers [8]. We use projected depth maps as
ground truth for supervised training. The depth completion network fails to fill the empty regions in COLMAP results. Also,
it fails to produce estimated depth in human regions with accurate depth values. Since most depth completion models show
poor performance, we did not add these experimental results in the manuscript. All color maps use the jet color map (low
E 1 high; grey means empty depth values.)



I. Visualization of Intermediate Results for Our Two Novel Consraints

A iy [ il b\ (P
Figure 5: Examples of the optical flow in the MS dataset. From top to bottom, each row shows the optical flows estimated
by FlowNet2.0 [12], the temporally adjacent images I/, the warped images I}, and the current images I;. Both I; and I, are
used as the input for our proposed training method, and the warped images I; are projected from the image coordinates of I/
to I, for flow-guided shape constraint (for more details, see Section 3.3 in the manuscript).

Image Depth Surface Normal Ground Human Mask

Flpd s ‘ | BAE
Figure 6: The intermediate results for the normal-guided scale constraints (for more details, see Section 3.4 in the manuscript).
We can obtain the normal directions from the estimated depth maps and find the ground regions. Human masks are estimated
by Mask R-CNN [10]. In training, the sampled pixels in each of the people are constrained by the estimated depth values at
the human’s ground contact point. All color maps use the jet color map (low E @ high; grey means empty depth values.)



J. Results on NYUv2 and TUM RGB-D

Figure 7 and 8 show the qualitative results of NYUv2 and TUM RGB-D, respectively. We acquire the sparse depth
map by sparsifying the groundtruth depth map in order to obtain the metric scale. Assuming the similar situation that the
reprojected depth maps are derived from the 3D model, we only sample the depth values in the position of SIFT features
for the corresponding images. In TUM, we used the ground truth camera pose provided by the dataset. In NYUv2, we
used R2D2 [23] to obtain correspondences by using FLANN-based search algorithm and estimate the relative pose via the
Perspective-n-Point (PnP [15]).

Figure 8: The qualitative results of the TUM RGB-D dataset. The 1st and 2nd raw images result from the sparse depth
maps, which are the sampled values of the Kinect with SIFT features. The 3rd and 4th raw images indicate the results for the
projection of the scale ambiguous 3D model. Although there is no significant improvement in the visual quality compared
to MiDasS [21] and Mannequin (MC) [16], DnD is able to estimate more accurate depth values in the numerical results since
our method is based on the metric depth.

Since the dynamic objects category of the TUM RGB-D dataset is a small-scale dataset, this dataset is not suitable for self-
supervised training method like DnD. As shown in Fig. 8, DnD does not show improved performance on qualitative results
compared to MiDaS and Mannequin (MC). Both MiDaS and MC are based on supervised learning which require dense
ground truth depth maps across different environments. These works trained their model on diverse and large-scale datasets.
Specifically, MC used 136K image-depth pairs from Mannequin challenge videos, and MiDaS was trained on 10 different
large-scale datasets '. However, DnD was trained on either MS or Dept datasets (25K or 60K images) without ground truth
depth maps. Therefore, DnD does not show better generalization ability to produce sharp depth maps. Instead, since we
focus on building a novel method to estimate metric depth maps, our method can show consistently better performance on
quantitative results on TUM RGB-D dataset.

Uhttps://github.com/intel-isl/MiDaS




K. Additional Qualitative Comparisons

In this section, we provide more additional qualitative comparisons (See Figure 4. in the manuscript).

Fast-MVSNet l s —

Figure 9: Qualitative comparisons with the state-of-the-art depth estimation algorithms in the MS dataset. From the third row
to bottom, the results of Fast-MVSNet [34], BTS [14], MiDaS [21], Mannequin (MC) [16], and DnD are shown. All color
maps use the jet color map (low B @ high; grey means empty depth values.)
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Figure 10: Qualitative comparisons with the state-of-the-art depth estimation algorithms in the Dept dataset. From the third
row to bottom, the results of Fast-MVSNet [34], BTS [14], MiDaS [21], Mannequin (MC) [16], and DnD are shown. All
color maps use the jet color map (low E @ high; grey means empty depth values.)
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