
Supplementary Material

A. Experimental Details
A.1. Training Details

In this section, we describe the details of the training en-
vironments we used. We implemented our methods based
on PyTorch [12] 1.3.0, and the entire models can be trained
with 2 Titan XP gpus with 12GB memory, respectively. As
mentioned in Sec. 4.2, we resized original image into a res-
olution of 192 × 640 and used a batch size of 12 for all
experiments. Also, the local patch size, K, is set to five,
and the margin, m, is set to 0.3 for the semantics-guided
triplet loss. For training with high resolution images in Ta-
ble 1b and Table 2 in the main paper, we resized original
image into 320× 1024 and the local patch size, K, was set
to seven as the image resolution increases.

The pseudo-labels for training semantic segmentation on
the KITTI Eigen split are generated using the off-the-shelf
segmentation network proposed in [16]. This network has
been trained on Mapillary Vistas [11], Cityscapes [2], and
fine-tuned on 200 images of the KITTI 2015 [10] training
set.

A.2. Network Architecture

The encoder architecture is based on a ResNet-18 [7],
removing the average pooling layer and the classifier layer.
Table 1 shows the detailed architecture of the depth decoder.
As mentioned in the main paper, we apply the CMA mod-
ules (cma0, cama1, cma2) to three layers of the decoder
(l = 0, 1, 2) taking different scales of the feature maps from
the previous layers. There is only one difference between
the depth and the segmentation decoder. The latter replaces
the disp layers of the depth decoder with semantic layers,
which has channel dimensions of 19, the same as the num-
ber of the classes.

A.3. Training Time and GPU Memory Require-
ments

In Table 2, we present training time, inference time
and GPU memory requirements compared with Mon-
odepth2 [5]. All models are trained for 20 epochs with a
batch size of 12 and input images are resized into a resolu-
tion of 192× 640. Since both the CMA and the semantics-
guided triplet loss (SGT) require additional memory, we
need two GPUs for training. The inference time is esti-

Decoder Architecture
l layers chns scale input

0
upconv5 256 32 econv5
iconv5A 256 16 [↑upconv5, econv4]
cma0 256 16 K,V: iconv5A, Q: iconv5B

1

upconv4 128 16 cma0
iconv4A 128 8 [↑upconv4, econv3]
cma1 128 8 K,V: iconv4A, Q: iconv4B
disp4 1 1 cma1

2

upconv3 64 8 cma1
iconv3A 64 4 [↑upconv3, econv2]
cma2 64 4 K,V: iconv3A, Q: iconv3B
disp3 1 1 cma2

3

upconv2 32 4 cma2
iconv2 32 2 [↑upconv2, econv1]
disp2 1 1 iconv2

4
upconv1 16 2 iconv2
iconv1 16 1 ↑upconv1
disp1 1 1 iconv1

Table 1: Detailed architecture of the depth decoder. ↑ de-
notes upsamping with nearest neighbor interpolation, and
iconvB is the feature map from the segmentation decoder at
the same scale. econv is skip-connections from the encoder.

Method Training time Memory Inference time
Monodepth2 [12] 14h 40m 8.6GB 4.9ms

w/ semantics 16h 20m 10.5GB 7ms
w/ CMA 16h 10m 7.2GB x 2 9.7ms

w/o CMA, w/ SGT 15h 50m 7.9GB x 2 7ms
full 18h 20m 9.4GB x 2 9.7ms

Table 2: Comparison of training time, inference time and
GPU memory requirements.

mated per each image with a resolution of 192 × 640. We
also present various configurations that can be useful for
comparison.

B. Additional Comparisons with Recent Works

In this section, we compare the proposed method with
recent state-of-the-art results in a different way from that
of the main paper. In Table 1 (main paper), all the results



Lower is better Higher is better
Method Backbone Size Sem AbsRel SqRel RMS RMSlog < 1.25 < 1.252 < 1.253

Monodepth2 [5] ResNet18 320× 1024 0.115 0.882 4.701 0.190 0.879 0.961 0.982
PackNet-Sfm [6] PackNet 384× 1280 0.107 0.802 4.538 0.186 0.889 0.962 0.981

SGDepth [8] ResNet18 384× 1280 ✓ 0.107 0.768 4.468 0.186 0.891 0.963 0.982
SAFENet [1] ResNet18 320× 1024 ✓ 0.106 0.743 4.489 0.181 0.884 0.965 0.984
HR-Depth [9] ResNet18 320× 1024 0.106 0.755 4.472 0.181 0.892 0.966 0.984
HR-Depth [9] ResNet18 384× 1280 0.104 0.727 4.410 0.179 0.894 0.966 0.984

Ours ResNet18 320× 1024 ✓ 0.102 0.687 4.366 0.178 0.895 0.967 0.984

Table 3: Depth prediction results on the KITTI Egien test split. All methods are trained with high-resolution monocular
images in the KITTI Eigen training split.

Lower is better Higher is better
Method Backbone Train Sem AbsRel SqRel RMS RMSlog < 1.25 < 1.252 < 1.253

Monodepth2 [5] ResNet18 K 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Poggi et al [13] ResNet18 K 0.087 0.514 3.827 0.133 0.920 0.983 0.995

PackNet-Sfm [6] PackNet K 0.086 0.505 3.746 0.132 0.919 0.983 0.995
SGDepth [8] ResNet18 K ✓ 0.085 0.487 3.757 0.130 0.921 0.984 0.996
HR-Depth [9] ResNet18 K 0.085 0.472 3.768 0.130 0.920 0.985 0.996

Ours ResNet18 K ✓ 0.083 0.439 3.627 0.126 0.924 0.986 0.996

Table 4: Depth prediction results on 652 images of the KITTI Eigen test split. The results are evaluated with the KITTI
improved ground-truth [15]

are from the models trained with the images of which the
resolution is resized into 192×640, for fair comparisons. To
further demonstrate that ours shows the best performance
even with high-resolution images, we compare the results
in Table 3. Please note that our result in Table 3 is the same
as that of the last row in Table 1b (main paper).

Additionally, we report the results on the KITTI Eigen
test split evaluated with improved ground-truth in Sec. B.2.
We use the same model without re-training.

B.1. Comparison with High-resolution Images

As shown in Table 3, our proposed method trained with
320 × 1024 images shows the best result comparing with
others, even including those trained with images of higher
resolution (384× 1280). Our method outperforms previous
works in every metric and it demonstrates that it performs
well in various resolutions.

B.2. Evaluation with KITTI Improved Ground-
truth

To further demonstrate the performance of our work,
we evaluate our model with a set of high quality depth
map proposed by Uhrig et al. [15] without re-training our
network, following evaluation protocol suggested in [5].
This ground-truth contains 652 of 697 test frames in KITTI
Eigen test split [3], and it resolved occlusions and moving
objects caused by re-projecting LIDAR points [5] appear-
ing in KITTI raw dataset [4]. In Table 4, we compare ours
with recent works on 652 images of the KITTI Eigen test

split evaluated with improved ground-truth. For evaluation
of SGDepth [8], PackNet-Sfm [6] and HR-Depth [9], we
use the authors’ publicly available off-the-shelf networks.
We follow the evaluation process in Monodepth2 [5]; thus,
we do not perform center crop in this case. Therefore, the
result of PackNet-Sfm in Table 4 is different from that in
the original paper [6]. Ours shows the state-of-the-art result
compared with previous works as shown in Table 4.

C. Ablation Study

C.1. Performance on Different Semantic Labels

The original off-the-shelf segmentation network [16],
used for generating semantic labels, has been fine-tuned
with 200 images of KITTI dataset. This training process
requires only 200 segmentation ground-truth for our tar-
get domain, the KITTI dataset, and this network can be
used to generate semantic labels for 39,910 training set and
4,424 validation set of KITTI Eigen split. In other words,
only tiny portion of ground-truth can significantly boost
the depth prediction performance on the target dataset.
To further verify the generalization-ability of the proposed
method, we also train the network with semantic labels gen-
erated from another segmentation network [14]. This off-
the-shelf network has been trained without any of images
contained in the KITTI dataset. It has been pre-trained
on Mapillary Vistas [11] and fine-tuned on Cityscapes [2]
ground-truth. Table 5 compares depth prediction results of
using different semantic labels generated from two differ-



Lower is better Higher is better
Backbone Seg. label AbsRel SqRel RMS RMSlog < 1.25 < 1.252 < 1.253

ResNet18 [16] 0.105 0.722 4.547 0.182 0.886 0.964 0.984
ResNet18 [14] 0.106 0.717 4.529 0.182 0.886 0.964 0.983
ResNet50 [16] 0.102 0.675 4.393 0.178 0.893 0.966 0.984
ResNet50 [14] 0.103 0.688 4.449 0.179 0.892 0.966 0.984

Table 5: Depth prediction results on KITTI Eigen test split. The two variants are trained with different semantic labels
generated from the off-the-shelf segmentation networks [16] and [14]. The former is used for our original implementation
and it has been fine-tuned with 200 images of KITTI 2015. The latter has been trained without images from KITTI dataset.

ent networks. There is not much difference between those
two cases, and the result for training segmentation with la-
bels from [14] still shows the state-of-the-art performance.
It demonstrates the proposed method can perform well even
with no requirements of segmentation ground-truth for the
target domain.

C.2. Class-specific Evaluation

We evaluate the class-specific performance of our pro-
posed methods in Fig. 1. Our proposed methods show
consistent improvements in every class compared with the
baseline [5], and naive joint training (LCE). In particular,
the full model shows remarkable improvements especially
on difficult the classes, e.g., pole, traffic light, traffic sign,
rider, motorcycle, and person. These classes tend to be thin,
small and distant, or they have complex shapes. This ver-
ifies the proposed method can detect precise and detailed
object boundaries even for difficult cases, leading to more
accurate depth predictions.

C.3. Ablations

In this section, we report the results of different con-
figurations for the CMA module and the semantics-guided
triplet loss. In Table 6, we compare the different layer con-
figurations to which the CMA modules are applied. We
chose l = 0, 1, 2 as it shows the best performance. Apply-
ing the CMA modules up to l = 3 and l = 4 degrades the
performance. They have relatively lower channel dimen-
sions; hence, the cross-task similarity cannot be computed
accurately.

In Table 7, we compare the results of the different mar-
gins, m, for applying the semantics-guided triplet loss. We
chose m = 0.3 for all experiments, as it shows the best
performance.

In Fig. 2, we qualitatively show the improvements of
each method we proposed. As shown in the 2nd row, our
baseline model produces poorly aligned depth predictions
with the objects in the scenes, e.g., traffic light and road
sign. After sharing the encoder and joint training with se-
mantics (+LCE), the predictions show improvements but
they are still not that accurate. Each method we proposed,
the semantics-guided triplet loss (LSGT ) and the CMA

l Abs Sq < 1.25

0,1 0.109 0.776 0.882
0,1,2 0.107 0.741 0.884

0,1,2,3 0.110 0.744 0.880
0,1,2,3,4 0.110 0.718 0.877

Table 6: Depth prediction performance of the CMA module
with different layer configurations.

m Abs Sq < 1.25

0.1 0.110 0.783 0.880
0.2 0.109 0.772 0.881
0.3 0.108 0.755 0.882
0.4 0.108 0.739 0.881

Table 7: Depth prediction performance of semantics-guided
triplet loss with different margins.

module, shows more improved depth predictions as shown
in the 4th and 5th rows. They make each prediction more
consistent with semantic labels. This verifies that the pro-
posed methods can fully utilize semantic information for
accurate depth predictions. Finally, our full method shows
the best result, producing clearly consistent predictions with
semantics.

D. Additional Qualitative Evaluations
In Fig. 3 and Fig. 4, we additionally compare the visual-

izations of depth predictions performance with recent state-
of-the-art methods, PackNet-Sfm [6], SGDepth [8] and HR-
Depth [9]. All methods are trained with monocular images
of size 192× 640. We used authors’ publicly available pre-
trained network. As shown in the figures, ours shows out-
standing performance especially on object boundaries, lead-
ing to more accurate depth predictions. Owing to the uti-
lization of implicit semantic region information for depth
predictions, our proposed method can produce consistent
depth maps even in the weak-texture regions as shown in
upper-right column of Fig. 3.



Figure 1: Class-specific performance of depth predictions after each method is applied.

Figure 2: Qualitative results of depth predictions after each method is applied.



Figure 3: Qualitative comparison of the depth predictions with recent works, PackNet-Sfm [6], HR-Depth [9], and
SGDepth [8].



Figure 4: Qualitative comparison of the depth predictions with recent works, PackNet-Sfm [6], HR-Depth [9], and
SGDepth [8].
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