
Supplementary for Standardized Max Logits: A Simple yet Effective Approach
for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation

A. Supplementary Material
This supplementary presents the quantitative results on

different architectures, hyper-parameter impacts, imple-
mentation details, and qualitative results.

A.1. Effects on Different Architecture and Back-
bone

This section presents the quantitative results of differ-
ent architecture and backbone (i.e., EfficientPS [11] and
ResNeSt [13]) on the FishyScapes Lost & Found valida-
tion set. As shown in Table 1, our approach outperforms all
other methods in both cases. However, the amount of per-
formance increase is not strictly correlated with the down-
stream task performance, as also pointed out in the previous
work [5, 7].

Architectures mIoU Methods AUROC ↑ AP ↑ FPR95 ↓

†EfficientPS
[11] 79.3

MSP 84.41 1.46 61.03
Max Logit 89.39 3.83 48.75

Ours 94.17 5.93 21.93

DeeplabV3+
w/ ResNeSt

[13]
79.1

MSP 87.23 7.89 57.67
Max Logit 91.91 22.58 51.12

Ours 95.32 31.38 30.37

Table 1: Results of EfficientPS and DeeplabV3+ with
ResNeSt backbone on Fishyscapes Lost & Found valida-
tion set. † denotes the results are obtained from the official
code with their pre-trained networks.

A.2. Analysis on Hyper-parameters

This section analyzes the impact of hyper-parameters
in our proposed method through ablation studies on
FishyScapes Lost&Found validation set.

Number of iterations n We report the quantitative re-
sults according to the number of iterations n used in itera-
tive boundary suppression, described in Section 3.3.1 of the
main paper. Note that we set the initial boundary width r0 to
2n so that ∆r = b r0n c equals 2 since we intend to reduce the
width by 1 from each side of the boundary. As shown in Ta-
ble 2, the performances in all metrics consistently increase
as n increases up to n = 4. While AUROC and FPR95 are
improved at n = 5, AP rather aggravates. Since the num-
ber of in-distribution and unexpected pixels are unbalanced,
we choose AP for our primary metric, which is invariant to

the data imbalance, as done in Fishyscapes. Hence, we use
n = 4 in our work.

Iterations AUROC ↑ AP ↑ FPR95 ↓

n = 1 96.73 36.26 15.48
n = 2 96.78 36.44 15.19
n = 3 96.84 36.54 14.86
n = 4 96.89 36.55 14.53
n = 5 96.93 36.44 14.22

Table 2: Quantitative results with respect to n on
Fishyscapes Lost & Found. Results are obtained after stan-
dardizing the max logit, iterative boundary suppression, and
dilated smoothing.

Dilation rate d We present the quantitative results with
respect to the dilation rate d used in dilated smoothing, de-
scribed in Section 3.3.2 of the main paper. As shown in
Table 3, taking wider receptive fields improves the perfor-
mance in AP up to d = 6. However, if the size of the re-
ceptive field increases further (e.g., after d = 7), the per-
formance rather degrades, indicating that a proper size of a
receptive field is crucial in properly capturing the consistent
local patterns.

Dilation AUROC ↑ AP ↑ FPR95 ↓

d = 1 96.86 33.25 14.50
d = 2 96.90 34.61 14.36
d = 3 96.92 35.57 14.33
d = 4 96.93 36.15 14.39
d = 5 96.92 36.46 14.47
d = 6 96.89 36.55 14.53
d = 7 96.86 36.47 14.57
d = 8 96.81 36.28 14.66
d = 9 96.76 35.99 14.91
d = 10 96.70 35.64 15.31

Table 3: Quantitative results according to the dilation rate
d on Fishyscapes Lost & Found. Results are obtained after
standardizing the max logit, iterative boundary suppression,
and dilated smoothing.

A.3. Further Implementation Details

We adopt DeepLabV3+ [2] as our segmentation network
architecture and mainly use ResNet101 [3] as the backbone
for most of the experiments. Note that, as already shown in
the main paper, our proposed method is model-agnostic and
achieves the best performance with the MobileNetV2 [12],



ShuffleNetV2 [10], and ResNet50 [3] backbones compared
to MSP [6] and max logit [4].

The model is trained with an output stride of 8 and the
batch size of 8 for 60,000 iterations with an initial learning
rate of 1e-2 and momentum of 0.9. In addition, we apply
the polynomial learning rate scheduling [9] with the power
of 0.9 and the standard cross-entropy loss with the auxil-
iary loss proposed in PSPNet [8], where the auxiliary loss
weight λ is set to 0.4. Moreover, in order to prevent the
model from overfitting, we apply color and positional aug-
mentations such as color jittering, Gaussian blur, random
scaling with the range of [0.5, 2.0], random horizontal flip-
ping, and random cropping. We adopt class-uniform sam-
pling [14, 1] with a rate 0.5.

As aforementioned, we set the number of boundary it-
erations n, the initial boundary width r0, and the dilation
rate d as 4, 8, and 6, respectively. Additionally, we set the
sizes of the boundary-aware average pooling kernel and the
smoothing kernel size as 3× 3 and 7× 7, respectively.

A.4. Qualitative Results

This section presents the additional qualitative results.
We first demonstrate the qualitative results of our meth-
ods and then their comparisons with other baselines. We
use the threshold at TPR95 and visualize the predicted in-
distribution and unexpected pixels as black and white, re-
spectively.

Our results Fig. 1 presents the qualitative results of ap-
plying iterative boundary suppression to show the effective-
ness of removing the false positives (i.e., in-distribution pix-
els detected as unexpected). We zoom in particular regions
with the red boxes to show the changes in detail. After ap-
plying iterative boundary suppression, we significantly re-
move the false positives in boundary regions.

Additionally, Fig. 2 describes the results of applying all
of our methods. The false positives in the boundary regions
(e.g., white pixels in the yellow boxes) are removed after
applying iterative boundary suppression. Also, as shown in
the green boxes, applying dilated smoothing effectively re-
moves the false positives in the non-boundary regions.

Comparison with other approaches We compare our
method with MSP [6] and max logit [4] by showing quali-
tative results. Figs. 3 and 4 show the results obtained from
Fishyscapes Lost & Found and Fishsyscapes Static, respec-
tively. Since we visualize the images with the threshold at
TPR95, most of the pixels in unexpected objects are identi-
fied. However, using MSP and max logit generate a substan-
tial amount of false positives. In contrast, our method pro-
duces a negligible amount of false positives, which demon-
strates our effectiveness.
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Figure 1: Qualitative results of applying standardized max logit and iterative boundary suppression with iteration 2 and 4,
respectively. We report the images of Fishyscapes Lost & Found. The white pixels indicate the pixels predicted as unexpected.
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Figure 2: Qualitative results of applying standardized max logit, iterative boundary suppression, and dilated smoothing,
respectively. We report the images of Fishyscapes Lost & Found. Yellow boxes and green boxes show that the false positives
are effectively removed by applying iterative boundary suppression and dilated smoothing, respectively. The white pixels
indicate the pixels predicted as unexpected.
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Figure 3: Comparison with MSP, max logit, and ours on Fishyscapes Lost & Found dataset. The white pixels indicate the
pixels predicted as unexpected.
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Figure 4: Comparison with MSP, max logit, and ours on Fishyscapes Static dataset. The white pixels indicate the pixels
predicted as unexpected.


