
Towards Rotation Invariance in Object Detection Supplement

Agastya Kalra1, Guy Stoppi1, Bradley Brown1, Rishav Agarwal1 and Achuta Kadambi1,2
1Akasha Imaging, Palo Alto CA

2UCLA, Los Angeles CA
{agastya, guy.stoppi, bradley.brown, rishav}@akasha.im, {achuta}@ee.ucla.edu

In the supplement we have the following structure: Ap-
pendix A provides the algorithms for implementing our pa-
per. Appendix B contains more detailed ablations for all
the different axis-alignment methods we tried. Appendix
C contains more results and information about shape op-
timization and the COCO shape. Appendix D has Faster-
RCNN [3] results on COCO [2]. Appendix E contains more
visualizations.

The code for Appendix C is also included in the supple-
ment, as a PDF and a .ipynb file.

A. Algorithm Implementation
Here we include the implementation of both parts of our

system. First the ellipse method in Algorithm 2 and then the
loss function in Algorithm 1. It is clearly visible that both
of these can be implemented in just a few lines of code.

Input: M, θ
M : Matched ground truth and predicted

boxes
θ: Rotational uncertainty threshold

Output: Lreg: Regression loss
lreg ← 0
for (p, gt ∈M ) do

lreg = lreg + l(p, gt)

if IoU(p, gt) < max(0.5, C(θ)) then
lreg = lreg + l(p, gt)

end

end
return lreg

Standard
Lreg

RU
Loss

Algorithm 1: Implementation of RU Loss requires a
simple one-line code change.

Input: Bi, θ
Bi = [x, y, h, w]: Input bounding box
(x, y): Center of the box
(h,w): Size of the box
θ: Angle of rotation data aug
s: scale of octagon (if used)

Output: Bo = [x′, y′, h′, w′]:Output bounding box

h2, w2 ← h / 2, w / 2

X ← [w2, w2,−w2,−w2]
Y ← [h2,−h2 − h2, h2]

X ← [w2sin(1
o), w2sin(2

o)...w2sin(360
o)]

Y ← [h2cos(1
o), h2cos(2

o)...h2cos(360
o)]

for xi ∈ X do
xi ← xi + x

end
for yi ∈ Y do

yi ← yi + y
end
Xr, Yr ← rotate(X,Y, θ)
xmin, xmax, ymin, ymax =
min(Xr),max(Xr),min(Yr),max(Yr)
w′, h′ ← xmax − xmin, ymax − ymin

x′, y′ ← (xmax + xmin) / 2, (ymax + ymin) / 2
Bo ← x′, y′, w′, h′

return Bo

Largest
Box

Ellipse

Algorithm 2: The algorithm for rotating a bounding
box label



B. Our Alternative Methods

In this section we present a more detailed description of
the other methods mentioned in the paper and show two
methods that are competitive with the ellipse in perfor-
mance.

Each method is accompanied by a mathematical defini-
tion, using terms defined in the original paper. For instance,
Rθ is the rotation operator and B converts a shape to its
axis-aligned bounding box.

Qθ
b0

is the set of all new possible labels for a given orig-
inal label b0 after rotating the annotation by θ degrees. Fi-
nally b̂θ for a given method represents the method’s esti-
mate for the new label after rotating the original label by θ
degrees.

B.1. RotIoU

The “RotIoU” idea was to select the box that maximizes
IoU with the rotated original label. We constrain the op-
timization to the valid set of boxes, Qθ

b , shown as the teal
regions in Figure 1.

While RotIoU had fairly good performance, it is simply a
worse version of Expected IoU. Conceptually RotIoU maxi-
mizes IoU with the rotated original label, whereas Expected
IoU maximizes IoU with expected ground truth labels. As
shown in the main paper, maximizing Expected IoU with
the ellipse leads to better performance.

b̂θRotIoU = argmax
bθ∈Qθ

b0

IoU(bθ,Rθ(Slargest)) (1)

Figure 1: The RotIoU method aims to make the new
label (b̂θRotIoU ) as similar as possible to the old label
(Rθ(Slargest)).

B.2. Scaled Octagon

b̂θoct(s) = B(Rθ(SOct(s))) (2)

Figure 2: The Scaled Octagon method interpolates between
the Largest Box (s = 0) and a Diamond (s = 0.5).

Our first instinct was to simply introduce a scaling factor
on largest box method, however this wouldn’t guarantee a
valid box. We then created the Scaled Octagon. We simply
interpolate between a diamond and the largest box with a
scaling factor s. As shown in Figure 2, we can see that
s = 0.5 gives a diamond and s = 0.0 gives the largest box.
The best value of s empirically is s = 0.333. We found this



b̂θrandom = bi for some bi ∈ Qθ
b0

(3)

Figure 3: Visualization of the Random Boxes method. The
red outlines show random shapes that were used for the
axis-alignment.

both maximizes EIoU and achieves a shape very close to
the Ellipse. We didn’t include this in the main paper, since
the final shape and EIoU are very similar to the ellipse. We
include results for this in the Best results section.

Formally, “Scaled Octagon s” is defined as below. We
define a shape by an ordered list of its (x,y) coordinates.

Original Label = {
(x1, y1), (x1, y2), (x2, y2), (x1, y2)

}
x′
1 = sx1 + (1− s)x2

x′
2 = (1− s)x1 + sx2

y′1 = sy1 + (1− s)y2

y′2 = (1− s)y1 + sy2

Octs = {
(x′

1, y1), (x
′
2, y1), (x2, y

′
1), (x2, y

′
2)

(x′
2, y2), (x

′
1, y2), (x1, y

′
2), (x1, y

′
1)

}

B.3. Random Boxes

The Random Boxes method consists of selecting a ran-
dom shape and then using that shape for axis-alignment of
the new label.

This idea was more to form a baseline for our other meth-
ods. Many of our methods are focused on selecting an op-
timal shape for axis-alignment. We use Random Boxes’s
results to ensure that our selection of the optimal shape is
indeed better than average. It is interesting to note that

the random shape baseline outperforms the largest box sig-
nificantly, showing the importance of replacing the Largest
Box.

B.4. COCO Shape

b̂θCOCO = B(Rθ(SCOCO)) (4)

Figure 4: Visualization of the COCO shape method. The
green dashed outline is the estimated COCO shape for this
aspect ratio.

Instead of maximizing EIoU using a random shape dis-
tribution, we can optimize over shapes from the COCO
dataset. In Appendix C Figure 7, we show plots of finding
the optimal shape for Expected IoU over the COCO dataset.
The resulting shape was not quite elliptical, but far more el-
liptical than Largest Box, as can be seen in Figure 4.

B.5. Our Best Methods

The results in Figure 6 show our best methods. We show
that they all have similar EIoUs, and similar performance
on their own. However we find that when combined with
RU Loss, the Ellipse is clearly better. We do not know why
exactly this occurs and can be an interesting direction of
future research. This paper focuses on replacing the Largest
Box with a robust alternative. We can see from the table
above this is true.

While it is interesting to understand the nuances of dif-
ferent methods, we focus the main paper on proposing the
best performing alternative to the Largest Box method - El-
lipse + RU Loss.



EIoUCOCO EIoURand mAP
Angles [0◦ − 360◦] [0◦ − 360◦] 0◦ 10◦ 20◦ 30◦

Previous Shape
Largest Box 69.4% 60.7% 35.20 28.37 22.34 18.47
Our Best Shapes
COCO 78.4% 71.7% 37.51 36.37 33.47 29.96
Octagon s = 0.333 78.1% 72.7% 37.54 36.62 33.89 30.42
Ellipse 77.8% 72.9% 38.21 36.83 33.59 29.95
+ Our RU Loss
COCO 78.4% 71.7% 38.51 37.85 35.69 32.53
Octagon 0.333 78.1% 72.7% 38.59 37.84 35.73 32.36
Ellipse 77.8% 72.9% 39.33 38.31 36.00 32.72

Figure 6: Comparison of the best methods with and with-
out RU Loss. We find that the methods are quite competi-
tive without RU Loss, but with RU Loss the ellipse is clearly
better. We also note that all three methods have similar Ex-
pected IoU on COCO and Random Shapes.

C. Expected IoU Optimization
In this section we first provide additional details on ex-

actly how the optimization was done. We also show that the
starting shape for the optimization does not affect the final
converged shape. Finally we show that if we use the COCO
dataset shapes instead of random shapes it converges very
close to an ellipse. We do not use this shape in our training
since it is obtained from segmentation labels.

C.1. Optimization Details

In this section we walk through a high level on how each
part of this optimization is done. We also provide a working
python jupyter notebook in the supplement as both a pdf and
as an ipynb. We recommend the reader to examine that for
all the details.

We revisit equation 15 from the original paper:

Ŝ = argmax
S∈Vb0

∑
θ

1

K

K∑
k=1

[
IoU(B(Rθ(S)),bθ

k

]
. (5)

The goal is to find the optimal shape that, when used for
rotation augmentation, will lead to the highest expected IoU

with potential ground truth boxes. To summarize from the
paper: Ŝ is the optimal shape, b0 is initial bounding box, θ
is the angle of rotation, B is the operator to convert a shape
to a bounding box by taking the min/max x, y coordinates
of the shape, Vb0 is the set of all possible shapes that would
lead to b0, Rθ is a rotation operator of θ degrees, and bθk is
a sampled ground truth box from a dataset P . More details
can be found in the paper.

This equation has three main components for implemen-
tation: the sampling method for bθk, evaluating the cost func-
tion, and performing the gradient ascent optimization. All
of these are implemented in the code files provided in the
supplement zip.

C.1.1 Sampling bθk

To sample a random ground truth box, we first randomly
sample a shape Sk from the dataset that could have led to
the initial bounding box b0. We do this for both a random
dataset of shapes, which we use in the paper, and COCO.
We then rotate this shape by θ and use the operator B to get
a potential bounding box: bθk = B(Rθ(Sk))

Random Dataset: This dataset is the one described in
the paper: given a bounding box b, random shapes (i.e. Vb)
are generated by selecting one point on each of the four
walls of the bounding box and connecting them together
into a polygon. This way we guarentee that taking the min-
imum and maximum points of the shape will lead to b0.
This method does not use the segmentation labels of any
dataset, and therefore is applicable to object detection.

MS CoCo Dataset: We can sample shapes for the MS
CoCo dataset by iterating through the MS CoCo dataset,
selecting a shape Sk such that B(Sk) is fairly close to the
bounding box b0’s aspect ratio, and then stretching it so it
fits completely within b0. This method leads to the optimal
box on MS CoCo, but uses segmentation labels hence we
do not use this to train. However this sampling still leads
to a shape that achieves an expected IoU close to that of an
ellipse.

C.1.2 Evaluating the Cost Function

To evaluate the cost function, we randomly sample K =
1000 boxes for each 5 degree interval of θ. We then evaluate
the cost function given an input shape S by averaging IoU
across all K boxes for each interval of θ.

C.1.3 Gradient Ascent

Performing gradient ascent directly on the cost function
leads to poor convergence and many local minimums. We
adapt gradient ascent using the following observation: to
perform a rotation augmentation, we do not need the full
shape Ŝ, we only need the convex hull H of the outline O



of the shape H(O(Ŝ)). We also define a shape by U , uni-
formly sampling, x, y coordinates along the boundary of the
convex hull of the shape. So a single step of gradient ascent
works as follows:

1. Compute the gradient G of the cost function w.r.t. the
current shape S.

2. Update S by adding G times some learning rate α.

3. Update S by sampling 200 random points along the
boundary of the convex hull of S = {x, y|x, y ∼
U(O(H(S)))}.

The last step is key to achieving proper convergence.

C.2. Examples

The graphs in this section show the optimization process
being applied to different bounding boxes on the datasets
above, as well as with multiple starting shapes. We see the
convergence doesn’t change depending on starting shape,
and in both cases the expected IoU of the ellipse (dotted
blue) is signficantly higher than that of the previous largest
box (dotted red).



Figure 7: Finding the optimal shape to use when rotating a box (with aspect ratio 1:1) in order to maximize Eqn. 15, starting
from the square, triangle, pentagon, and a random shape. The final optimal shape is much more rounded than the largest
box method. In addition, the expected IoU of using an Ellipse is always much higher than the expected IoU of using the
Largest Box.



Figure 8: Finding the optimal shape to use when rotating a box (with aspect ratio 1:2) in order to maximize Eqn. 15, starting
from the square, triangle, pentagon, and a random shape. The final optimal shape is much more rounded than the largest
box method. In addition, the expected IoU of using an Ellipse is always much higher than the expected IoU of using the
Largest Box.



D. Faster R-CNN
We test our method with Faster R-CNN on the COCO

validation dataset (Table 1). The results look very similar
to the RetinaNet results from the main paper, showing that
our method generalizes across both one-stage and two-stage
architectures.



Figure: The above results for Faster-RCNN are very similar to RetinaNet results from the main paper. Our method
closes the rotation gap across all three metrics.

mAP AP50 AP75
0◦ 10◦ 20◦ 30◦ 0◦ 10◦ 20◦ 30◦ 0◦ 10◦ 20◦ 30◦

No Rotation 38.06 35.88 31.49 26.71 59.64 56.06 49.87 43.13 40.84 38.86 33.94 28.56
Largest Box 35.07 28.16 21.81 18.02 59.31 56.11 51.09 45.80 36.42 25.12 14.29 9.94
relative improvement -7.85% -21.53% -30.76% -32.52% -0.55% 0.08% 2.44% 6.20% -10.81% -35.36% -57.89% -65.20%
Our Method 38.02 36.97 34.07 30.57 59.96 58.18 54.74 50.27 40.77 40.10 36.58 32.49
relative improvement -0.09% 3.04% 8.18% 14.46% 0.54% 3.77% 9.77% 16.55% -0.17% 3.19% 7.77% 13.78%
Perfect Labels 38.39 37.81 35.33 31.94 60.23 58.39 55.04 50.50 41.29 40.87 38.13 34.30
relative improvement 0.86% 5.38% 12.18% 19.60% 0.99% 4.15% 10.36% 17.08% 1.11% 5.17% 12.34% 20.13%

Table 1: For Faster-RCNN, our method of Ellipse + RU Loss performs close to perfect labels across all metrics at generalizing
to new rotations on COCO val2017. This is similar to the results for RetinaNet [1] from the main paper.



E. Sample Images
In this section we present sample predictions from

COCO in Figures 9 and 10. We give sample predictions
from Pascal VOC in Figure 11.

Figure 9: Predictions on a single image over several positive rotations. As the rotation angle increases, training without
rotation leads to missed objects and the largest box predicts oversized boxes.



Figure 10: Predictions on a single image over several negative rotations.



Figure 11: Predictions on the Pascal VOC dataset. Similarly to COCO, training without rotation leads to missed
objects and training with largest box leads to oversized predictions.



References
[1] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Proceed-
ings of the IEEE international conference on computer vision,
pages 2980–2988, 2017. 9

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1


