
(Supplementary Material)
CAG-QIL: Context-Aware Actionness Grouping via Q Imitation Learning

for Online Temporal Action Localization

Hyolim Kang, Kyungmin Kim, Yumin Ko, Seon Joo Kim

Yonsei University

{hyolimkang,kyungminkim,yuminko,seonjookim}@yonsei.ac.kr

1. Practical Usage of On-TAL
In this section, we briefly introduce several real-world

applications of Online Temporal Action Localization (On-
TAL).

1.1. Autonomous Driving

Consider the case of detecting a pedestrian in au-
tonomous driving. Car must stop when it detects cross-
ing pedestrian, maintain the status during the crossing, and
move off at the endpoint of the detected action. In this case,
detecting the whole action instance is exceptionally impor-
tant because fragmented detection of the action instance can
lead to an accident. Note that naive OAD extension is prone
to fragmented detection as we mentioned in our paper, and
ODAS only can detect start point of the action.

1.2. Robot Interaction

The situation above can be generalized to any computer
vision task that involves alternating (dialogue-like) interac-
tion. For example, a robot that actively interacts with the
environment has to a) distinguish action instances from ir-
relevant background frames and b) point out the exact time
of the start and end of the action in the online manner, since
it should behave differently when the action is in progress
and when it is finished.

1.3. Event-Driven Surveillance Camera

On-TAL can do a significant role in extremely long
streaming video processing. Assume a dashboard camera
(or standalone security cam) with limited memory. Saving
all the streaming input is infeasible because of memory con-
straint, so there is a clear need for recording salient part.
When we use ODAS to deal with this, it can decide when to
start recording, but it’s endpoint is vague. On-TAL, on the
other hand, can solve the problem more precisely because

it can adaptively decide when to start and stop recording
depending on what it is seeing.

1.4. Streaming Sports Video Understanding

When we conduct video understanding on online stream-
ing baseball video, its main task would be to follow up the
high level context of the game, like counting the number
of strikes, or homeruns. Note that the consequence (one-
base hit, homerun etc.) of the pitching is revealed at the
very end of the action. Therefore, ODAS cannot solve this
task because simply detecting the start point of pitching
does not really tell us about what it resulted in at the end.
Besides, dynamically generated “homerun clip” can be in-
stantly used as highlight replay or bookmark point. This
situation can be generalized to any on-air sports broadcast-
ing.

2. Implementation Details

2.1. Model Architecture

OAD models (M1,M2 in the notation from our paper)
consist of one-layer LSTM with 1024 hidden unit and two
FC layers for classification head. It takes a feature se-
quence as an input and generate actionness score α (M1) or
class probability p (M2). They are both trained with cross-
entropy loss.

Context-aware agent Υ is composed of 3 embed-
ding modules, two FC layers with 64 hidden units and
LeakyReLU activation function. To learn actionness and
class probability embedding, we used WeightedEmbedding
module, while Embedding module from torch.nn is used for
decision embedding.

For training, we set queue (qa, qd) length to 24 (n =
24) and exploit 80,000 expert transitions in THUMOS14
and 240,000 in Activitynet1.3. Replay memory size is

set to 200,000 when we apply the DQN algorithm [7].
AdamW [6] optimizer with lr = 0.0001 is used for CAG-
QIL training, while lr = 0.001 is used for training OAD
models.

Code snippet of WeightedEmbedding module is pro-
vided below.

class WeightedEmbedding(nn.Module):
def __init__(self, vocab_size,

dim):
super().__init__()
self.weight =
nn.Parameter(

torch.randn(
vocab_size, dim

)
)
self.to(DEVICE)

def forward(self, x):
IN: x [B, L, C]
C == vocab_size
OUT: [B, L, E]
E == dim
x = x.unsqueeze(3)
[B, L, C, 1]
x = x*self.weight
[B, L, C, E]
x = torch.sum(x, dim=2)
[B, L, E]
return x

2.2. Training Algorithm

Algorithm 1 briefly describes how CAG-QIL is actu-
ally implemented. Most of the notations are shared with
the main paper, except for some newly introduced func-
tions for clarity. For instance, q.update(x) function refers
to two consecutive operations q.dequeue(); q.enqueue(x)
and ε-Greedy(dmax) returns a random decision drandom
with probability ε and returns dmax otherwise. Remember
that
δ2(D, r) ,

1

|D|
∑

(st,dt,st+1)∈D

(Qθ(st, dt)

−(r + γmax
dt+1

Qθ(st+1, dt+1))2,

as we discussed in the main paper.
When it comes to OpenAI gym framework,

env.step(action) is equivalent to the line 23, 14, 15,
16 and 17 in the algorithm, since it receives a decision and
returns an updated state.

To select best-performing model, we utilized Hungar-
ian F1 score. It employs Hungarian algorithm [5] to find
the most appropriate one-to-one matching between the pre-

diction and the ground truth proposals in a class-agnostic
manner and calculates F1 score from the matching. We
consistently tracked its moving average during the train-
ing procedure, and stored the model if the score exceeds
past best-performing score. After the training, we evaluated
F1 > 0.5 models in the whole train set and selected one
with the highest recall.

Algorithm 1: CAG-QIL
Input: Expert Database Eexpert,
Precalculated α, p sequences APNi=1

Output: Trained Qθ(s, a)
1 Initialize agent replay memory Magent ← φ
2 Initialize expert replay memory Mexpert ← Eexpert
3 for episode = 1, 2, 3, 4... do
4 Get a random α, p sequence AP ∈ APNi=1

5 Initialize qa and qd
6 Get α1 from AP
7 Get p1 from AP
8 qa.update(αt)
9 s1 ← [qa; qd; p1]

10 dmax ← maxdQθ(s1, d)
11 d1 ← ε-Greedy(dmax)
12 qd.update(dt)
13 for t← 2 to len(A) do
14 Get αt from AP
15 Get pt from AP
16 qa.update(αt)
17 st ← [qa; qd; pt]
18 Store a transition (st−1, dt−1, st) in Magent

19 Sample a minibatch Dagent from Magent

20 Sample a minibatch Dexpert from Mexpert

21 θ ← θ − η∇θ(δ2(Dexpert,+0.1)
+ δ2(Dagent,−0.1))

22 dmax ← maxdQθ(st, d)
23 dt ← ε-Greedy(dmax)
24 qd.update(dt)

25 end
26 end

2.3. Queue Initialization

In this section, we describe how to initialize qa and qd at
the first timestep. We manually compute d1 (d1 = 1 if α1 >
0.5 d1 = 0 otherwise) and fill initial qd with it. qa is also
filled with the α1, except the last index. Fig. 1 is provided
for clear explanation.

2.4. Video Segments Used during Training

Due to varying characteristics of the datasets, there is a
slight difference in the training method for CAG-QIL. To
be specific, partial video segments are used in THUMOS14
for training, while whole videos are used in Activitynet1.3.

!" !# …

!" !" !" !" !" !#

If $% > '.):
1 1 1 1 1 1

Else:

0 0 0 0 0 0

0 0 0 0 0 !"

0 0 0 0 0 0

,-./#

,0./#

,0./"

,-./"

Queue	initialization	in	THUMOS14	and	BBDB:

Queue	initialization	in	Activitynet1.3:

Given	! sequence	of	a	video	
(the	output	of	OAD	model)

Figure 1. Illustration of queue initialization.

For example, suppose that we have a two-minute video. In
THUMOS14, the 00:24 - 01:32 segment (the starting point
and the length can vary) of the video can be used in the
training procedure, while the whole 2 minute video is used
for Activitynet1.3. This is because a video in THUMOS14
contains multiple actions but the number of videos is limited
(only 200 training videos), whereas an Activitynet1.3 video
contains only a small number of actions but the number of
videos is relatively large.

Method 0.3 0.4 0.5 0.6 0.7

OAD-Grouping 33.3 28.0 22.0 16.8 10.4
CAG-GAIL 42.6 35.1 27.2 20.3 11.8
CAG-QIL 44.7 37.6 29.8 21.9 14.5

Table 1. Performance of CAG-GAIL, OAD-Grouping and CAG-
QIL on THUMOS14.

3. Other Imitation Learning Algorithm
Generative Adversarial Imitation Learning (GAIL) [3]

utilizes a discriminator network to distinguish where the
state-action pair comes from and uses the network’s out-
put as the reward for the given state-action pair. The dis-
criminator network is trained in the adversarial manner, as
in [2]. In this setting, the reward will be high if the given
state-action pair is more “expert-like”, and low otherwise.

However, due to the inherent instability of the genera-
tive adversarial model, it suffers from extreme brittleness.
Furthermore, since GAIL has a separate network to approx-
imate the reward function, it has to harmonize multiple net-
works including the actor, the critic, and the reward net-
works, exacerbating the instability problem.

We tried to apply GAIL to our algorithm (namely CAG-
GAIL) but it resulted in unsatisfactory performance com-
pared to CAG-QIL. Experimental results is shown in the
Table 1.

4. Evidence of CAG-QIL’s Effectiveness
Figure 2 demonstrates action instance length distribution

of each model. Note that CAG-RL does NOT alleviate the
fragmented detection. Rather, it deteriorated the fragmen-
tation issue, showing excessive number of very short pro-
posals. Only CAG-QIL can generate action instances with
reasonable length.

Figure 2. Distribution of action instance length in THU-
MOS14. Red, green and blue line represents distribution of ac-
tion instance length generated by OAD-Grouping, CAG-RL, and
CAG-QIL, respectively, while a bar graph represents ground truth
distribution. QIL-trained model significantly reduces the number
of short instances, matching distribution of ground truth.

5. Result on Baseball Database (BBDB)
In addition to THUMOS [4] and ActivityNet [1], we ap-

ply On-TAL to Baseball Database (BBDB), which was in-
troduced in [8]. BBDB is a baseball dataset for multiple
video understanding tasks, e.g. action recognition, temporal
action localization, etc. It provides temporal boundary an-
notations of 30 action classes collected in a semi-automatic
way.

Real-time sports broadcasting system is one of the most
practical applications of On-TAL, in which other existing
tasks such as TAL and OAD cannot be utilized. In the ac-
companying video, we present a demonstration of applying
our framework for online baseball play-by-play system.

Here, we show the effectiveness of our proposed algo-
rithm, CAG-QIL, on BBDB. Table 2 presents the action de-
tection results of OAD-Grouping and CAG-QIL. CAG-QIL
especially shows better performance than OAD-Grouping
in long actions, like Homerun.

6. How about extending ODAS?
Our proposed method, CAG-QIL, is built on methods

for OAD and showed outstanding results in Online Tem-
poral Action Localization (On-TAL) and Online Detection

Dataset Class Length OAD-Grouping CAG-QIL

BBDB Ball 5.0 38.0 34.1
Base on balls 5.0 1.1 0.7
Strike 5.0 37.5 33.5
Swing and a miss 5.0 33.5 27.6
Strike out 5.0 5.7 4.3
Foul 7.0 39.0 48.0
Hit by pitch 7.0 23.0 18.3
Wild pitch 9.0 7.8 19.2
Passed ball 9.0 0.0 0.0
Bunt out 11.0 14.7 16.7
Sacrifice bunt out 11.0 37.0 44.8
Error 11.0 0.5 2.3
Infield hit 11.0 3.9 12.2
Bunt hit 11.0 24.1 24.5
Pickoff out 11.0 0.0 0.0
Fly out 11.0 9.5 29.9
Foul fly out 11.0 33.4 39.1
Ground out 11.0 2.9 12.1
Stealing base 11.0 18.1 13.8
Touch out 11.0 7.7 19.5
Line-drive out 11.0 9.3 21.3
Tag out 11.0 2.1 5.7
Caught stealing 11.0 14.2 18.1
One-base hit 12.0 17.0 38.3
Double play 13.0 8.5 15.6
Two-base hit 14.0 27.9 41.9
Bunt foul 14.0 5.1 8.6
Home in 15.0 3.0 7.3
Three-base hit 16.0 3.5 5.0
Homerun 16.0 14.5 34.0

Average 14.8 19.8

Table 2. BBDB Class AP at tIoU 0.7.

of Action Start (ODAS). One might think extending ODAS
to ODAE (Online Detection of Action End) and matching
the start-end point also can solve On-TAL. However, the
start-end matching is not trivial in that there’s no guaran-
tee of alternating start-end point detection. For example,
the detected start/end point sequence can be “start-start-end-
start-end-end...” unless we use regularization for alternating
constraint. Therefore, designing appropriate regularization
method for alternating start-end detection or finding algo-
rithm for proper start-end point matching can be another
good direction for solving On-TAL. We leave this for future
work.

References
[1] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and

Juan Carlos Niebles. Activitynet: A large-scale video bench-
mark for human activity understanding. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 961–970, 2015. 3

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, 2014. 3

[3] Jonathan Ho and Stefano Ermon. Generative adversarial imi-
tation learning. In Advances in Neural Information Processing
Systems. 2016. 3

[4] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Action
recognition with a large number of classes. http://crcv.
ucf.edu/THUMOS14/, 2014. 3

[5] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 1955. 2

[6] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 2

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement learn-
ing. Nature, 2015. 2

[8] Minho Shim, Young Hwi Kim, Kyungmin Kim, and Seon
Joo Kim. Teaching machines to understand baseball games:
Large-scale baseball video database for multiple video under-
standing tasks. In Proceedings of the European Conference
on Computer Vision, pages 404–420, 2018. 3

http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/

