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- Supplementary Materials -

In this supplementary materials, we provide additional
details and results of our method.
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1. Alternative derivation of relational embed-
ding

Equations (4), (5), and (6) in the main paper describe
the process of deriving relational embeddings, q and s ∈
RC , using pre-computed co-attention maps, Aq and As ∈
RH×W , where the attention maps themselves provide in-
terpretable visualization, e.g., Fig. 1(c) in the main paper.
In this section, we derive q and s in an alternative way of
not explicitly introducing the attention maps, Aq and As,
but multiplying a feature map by cross-correlation, which
is used in spatial attention work [3, 14, 16]. Let us denote
the normalized cross-correlation tensor in Eq. (4) by

C̃ =
exp (Ĉ(xq,xs)/γ)∑
x′

q
exp (Ĉ(x′

q,xs)/γ)
(s.1)

and reshape it to a 2D matrix: C̃ ∈ RHW×HW .
The relational embedding q is equivalently derived by

multiplying two matrices C̃⊤ and Fq ∈ RHW×C followed

by average pooling:

q =
∑
xq


(

1

HW

∑
xs

C̃(xq,xs)

)
︸ ︷︷ ︸

Eq. (4)

Fq(xq)

 (Eq. (5))
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)
Fq(xq)

=
1

HW

∑
xs

∑
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C̃(xq,xs)Fq(xq)

=
1

HW

∑
xs

∑
xq

C̃⊤(xs,xq)Fq(xq)︸ ︷︷ ︸
matrix multiplication

=
1

HW

∑
xs

C̃⊤Fq︸ ︷︷ ︸
RHW×C

(xs). (s.2)

Here, C̃⊤Fq is considered as softly-aligning the query fea-
ture map Fq in the light of each position of the support using
the cross-correlation C̃⊤.

Likewise, the relational embedding s is computed as

s =
1

HW

∑
xq

C̃Fs(xq). (s.3)

2. Comprehensive details on implementation
For training, we use an SGD optimizer with a momen-

tum of 0.9 and a learning rate of 0.1. We train 1-shot mod-
els for 80 epochs and decay the learning rate by a factor of
0.05 at each {60, 70} epoch. To train 5-shot models, we
run 60 epochs and decay the learning rate at each {40, 50}
epoch. We randomly construct a training batch of size 128
for the ImageNet family [11, 19] and 64 for CUB [20] &
CIFAR-FS [1] to compute Lanchor. This objective is jointly
optimized from scratch with Lmetric and Lanchor as described
in Sec. 4.4. For a fair comparison, we adopt the same image
sizes, the backbone network, the data augmentation tech-
niques, and the embedding normalization following the re-
cent work of [23, 24].



self-correlation category of mini CUBcomputation neighbors ImgNet

✗ (GAP baseline) ✗ 65.33 77.54
R ∈ RH×W×H×W×C absolute 66.41 76.34

R ∈ RH×W×U×V×C relative 66.66 78.69

Table s.1: Comparison between absolute and relative neighbor-
hood space in computing the self-correlation tensor R.

4D convolution mini CUB GPU time
kernels ImgNet (ms)

✗ (GAP baseline) 65.33 77.54 27.74
vanilla 4D [12] 65.59 78.89 60.35

separable 4D [22] 65.90 78.49 34.97

Table s.2: Comparison between 4D convolutions for h(·).

3. Ablation studies

We provide more ablation studies on CUB [20] and
miniImageNet [19] in the 5-way 1-shot setting.

3.1. Self-correlation computation with relative vs.
absolute neighbors

We validate the importance of relative neighborhood cor-
relations of a self-correlation tensor R in Table s.1. We
set H = W = U = V such that the two models have
the same input sizes for a fair comparison. The results
show the superiority of the relative neighborhood correla-
tion. An advantage of the relative correlation over the abso-
lute one is that relative correlations provide a translation-
invariant neighborhood space. For example, let us con-
sider a self-correlation between a reference position x and
its neighbors. While an absolute correlation (x,x′) ∈
RH×W×H×W provides a variable neighborhood space as
x translates by t: (x + t,x′ + t), a relative correlation
(x,p) ∈ RH×W×U×V provides a consistent view of the
neighborhood space no matter how x moves: (x+ t,p).

3.2. Separable vs. vanilla 4D convolution on CCA

Comparison between the original vanilla 4D convolu-
tional kernels [12] and separable 4D kernels [22] is summa-
rized in Table s.2, where we adopt the separable one for its
efficiency. Note that the separable 4D kernels approximate
the vanilla 3×3×3×3 kernels by two sequential 3×3×1×1
and 1×1×3×3 kernels followed by a point-wise convolu-
tion. The reported GPU time in Table s.2 is an average time
for processing an episode and is measured using a CUDA
event wrapper in PyTorch [10]. While the two kinds of ker-
nels closely compete with each other in terms of accuracy,
the separable one consumes less computational costs.

method 5-way 1-shot # add.
accuracy (%) params

CAN [5] 63.85 ± 0.48 0.3K
RENet (ours) 67.60 ± 0.44 203.2K
LEO [13] 61.76 ± 0.08 248.8K
CTM [7] 64.12 ± 0.82 305.8K
FEAT [23] 66.78 ± 0.20 1640.3K
MTL [17] 61.20 ± 1.80 4301.1K
wDAE [4] 61.07 ± 0.15 11273.2K

Table s.3: Performance comparison in terms of model size and
accuracy (%) on miniImageNet.
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Figure s.1: Accuracy (%) of varying γ on miniImageNet.

3.3. Number of parameters

We measure the number of additional model parameters
of recent methods and compare them with RENet in Ta-
ble s.3. Table s.3 studies the effect of additional parameters
only so we collect publicly available codes of methods that
use additional parameterized modules [4, 5, 7, 13, 17, 23],
and intentionally omit [2, 6, 8, 9, 15, 18, 21, 24] as their
trainable parameters are either in the backbone network
or in the last fully-connected layer. Compared to the
largest model [4], ours performs significantly better (67.60
vs. 61.07) while introducing 55 times less additional capac-
ity (203.2K vs. 11.2M).

3.4. Temperature γ for co-attention computation

We investigate the impact of the hyper-parameter γ
that controls the smoothness of the output attention map
(Eq. (4)). As its name “temperature” suggests, a higher tem-
perature outputs a smoother attention map, while a lower
temperature outputs a peakier one. Figure s.1 shows that
the temperature γ has a certain point that maximizes the
accuracy by appropriately balancing the smoothness factor.
Interestingly, an extremely high temperature γ = 100 de-
grades accuracy by making all attention scores evenly dis-
tributed. It is noteworthy that our full model RENet with a
range of γ ∈ {3, 4, 5, 6, 7} outperforms all existing meth-
ods on the dataset.
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Figure s.2: Accuracy (%) of varying U × V on miniImageNet.

3.5. Local window size UV for SCR

To evaluate the effectiveness of learning relational fea-
tures from local neighborhood correlation, we vary the
local window size UV of a self-correlation tensor R ∈
RH×W×U×V×C . As shown in Fig s.2, the accuracy steadily
increases as more neighborhood correlations are learned,
which indicates that learning relational structures is favor-
able for few-shot recognition. Note that SCR with U =
V = 1 already outperforms the GAP baseline, which is an
effect of learning from l2-normalized features (Eq. 1). De-
spite the consistent accuracy gain from observing wide local
window, we choose U = V = 5 for all experiments to limit
the space complexity increased by a factor of UV .

4. Qualitative results
To demonstrate the effects of our method, we present ad-

ditional qualitative results. All images are sampled from the
miniImageNet validation set in the 5-way 1-shot setting.

4.1. Effects of SCR

We ablate the SCR module and demonstrate the effects
of SCR in Fig. s.3. The results show that “CCA w/ SCR”
successfully attends to fine characteristics than “CCA w/o
SCR” does, implying that the SCR module provides reliable
representation for the subsequent CCA module.

4.2. Co-attention maps on multi-object queries

Given a multi-object image as a query, we examine if the
object regions can be adaptively highlighted depending on
the support semantics in Fig. s.4. The CCA module suc-
cessfully captures query regions that are semantically re-
lated with each support image. This effect accords with the
motivation of the CCA module, which is to adaptively pro-
vide “where to attend” between two image contexts.

4.3. Cross-correlation refinement via h(·)
We demonstrate the effect of 4D convolutional block

h(·) that filters out unreliable matches in the initial cross-
correlation by analyzing neighborhood consensus patterns.

We visualize the top 10 matches among 2HW matching
candidates computed by argmax of matching scores from
each side. As shown in Fig. s.5, the initial cross-correlation
C exhibits many spurious matches misled by indistinguish-
able appearance, e.g., matching two regions of the sky,
whereas the updated cross-correlation Ĉ shows reliable and
meaningful matches, e.g., matching two sails.
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