
Appendices
A. Implementation details

In this section we describe the overall training procedure and delve into the training and evaluation details for the stochastic segmentation
experiments on the LIDC dataset and the modified Cityscapes dataset.

A.1. Training procedure
Algorithm 1 outlines the practical procedure used to pretrain the calibration network, and the subsequent training of the refinement

network. Even though the two networks can be trained end-to-end at once, in our experiments we use the two-step training procedure to
stabilise the training and reduce the memory consumption on the GPU. This way we are able to fit larger batches and/or more samples for
the estimate of Lcal. Algorithm 2 shows the inference procedure for obtaining M output samples.

Algorithm 1 Model training with calibration network pretraining
require: training data D, number of samples M , learning rate η, calibration loss scale λ;

1: procedure TRAINING(D,M, η, λ)
2: while not converged do . Pretraining of Fθ
3: Sample batch {x, y}t ∈ D
4: Update θt+1 with −η∇θtLce({x, y}t, θt)
5: end while
6: while not converged do . Adversarial training of Gφ and Dψ

7: Sample batch {x, y}t ∈ D
8: for i = 1, 2, . . . ,M do
9: Sample yi,tref = Gφt(Fθ∗(xt), εi) where εi ∼ N (0, 1)

10: end for
11: Compute Gφ(Fθ(x))t = 1

M

∑M
i=1 y

i,t
ref

12: Compute Lcal(xt, θ
∗, φt) =

∑
i,j,k

(
Gφ(Fθ(x))t

(
logGφ(Fθ(x))t − logFθ∗(xt)

))
i,j,k

13: Update φt+1 with −η∇φt (LG(θ∗, φt, {x, y}t) + λLcal(xt, θ
∗, φt))

14: Update ψt+1 with −η∇ψtLD(θ∗, φt, ψt, {x, y}t)
15: end while
16: end procedure

Algorithm 2 Inference procedure
require: test data point x, number of samples M ;

1: procedure INFERENCE(x,M) . Using θ∗ and φ∗ from Algorithm 1
2: for i = 1, 2, . . . ,M do
3: Sample yiref = Gφ∗(Fθ∗(x), εi) where εi ∼ N (0, 1)
4: end for
5: end procedure

Notice that any off-the-shelf optimisation algorithm can be used to update the parameters θ, φ and ψ. For the segmentation experiments,
we utilise the Adam optimiser [29] with β1 = 0.5, β2 = 0.99 and weight decay of 5e−4. Fθ is trained with a learning rate of 2e−4 which
is then lowered to 1e−4 after 30 epochs. Gφ and Dψ are updated according to a schedule, where Gφ is updated at every iteration, and Dψ
is trained in cycles of 50 iterations of weight updating, followed by 200 iterations with fixed weights. The refinement network is trained with
an initial learning rate of 2e−4, lowered to 1e−4 after 30 epochs, whereas the discriminator has an initial learning rate of 1e−5, lowered to
5e−6 after 30 epochs. Additionally, we utilise the R1 zero-centered gradient penalty term [43], to regularise the discriminator gradient on
real data with a weight of 10. Other hyperparameter specifics such as the batch-size and whether we inject stochasticity via random noise
samples or latent code samples, depend on the experiment and are disclosed in the respective sections below or in the main text.

A.2. 1D bimodal regression
In the following we derive the mean squared error form of the cross entropy and calibration losses used in experiment Section 4.1 under

the assumption that the likelihood model for qθ and qφ is a univariate Gaussian distribution with a fixed unit variance. Using the setup

from Eq. (2) it then follows that:

Lce(D, θ) = −EpD(x,y)[logN (y | Fθ(x), 1)] (10)

=
1

2
EpD(x,y)

[
(y − Fθ(x))2

]
+ const. (11)

Based on the definition of the calibration loss in Eq. (6) we show that:

Lcal(D, θ, φ) = EpD
[
KL
(
N
(
y
∣∣ Gφ(Fθ(x)), 1

) ∣∣∣∣ N (y | Fθ(x), 1)
)]

(12)

= EpD
[
EN(y|Gφ(Fθ(x)), 1)

[
logN

(
y
∣∣ Gφ(Fθ(x)), 1

)
− logN (y | Fθ(x), 1)

]]
(13)

= EpD
[
EN(y|Gφ(Fθ(x)), 1)

[
−1

2

(
y −Gφ(Fθ(x))

)2
+

1

2
(y − Fθ(x))2

]]
+ const (14)

= EpD
[
EN(y|Gφ(Fθ(x)), 1)

[
yGφ(Fθ(x))− 1

2
Gφ(Fθ(x))2 − yFθ(x) +

1

2
Fθ(x)2

]]
+ const (15)

= EpD
[
Gφ(Fθ(x))2 − 1

2
Gφ(Fθ(x))2 −Gφ(Fθ(x))Fθ(x) +

1

2
Fθ(x)2

]
+ const (16)

=
1

2
EpD

[(
Gφ(Fθ(x))− Fθ(x)

)2]
+ const. (17)

A.3. LIDC
Architectures For the calibration network, Fθ , we use the encoder-decoder architecture from SegNet [2], with a softmax activation on
the output layer.

Training During training, we draw random 180×180 image-annotation pairs, and we apply random horizontal flips and crop the data to
produce 128×128 lesion-centered image tiles. All of our models were implemented in PyTorch and trained for 80k iterations on a single
32GB Tesla V100 GPU.

We train all our models for the LIDC experiments using 8-dimensional noise vectors in the cGAN experiments, or latent codes in
the cVAE-GAN experiments. This value was empirically found to perform well, sufficiently capturing the shape diversity in the dataset.
Additionally, in the refinement networks loss, we set the weighting parameter λ in the total generator loss, defined in Eq. (7) in the main
text, so as to establish a ratio of LG : Lcal = 1 : 0.5, where LG is the adversarial component of the loss, and Lcal is the calibration loss
component. In practice, the actual weights used are 10 for LG, and 5 for Lcal.

Evaluation Following [31], [32], [23], and [4] we use the Generalised Energy Distance (GED) [52] metric, given as:

D2
GED(pD, qφ) = 2Es∼qφ,y∼pD [d(s, y)]− Es,s′∼qφ

[
d(s, s′)

]
− Ey,y′∼pD

[
d(y, y′)

]
, (18)

where d(s, y) = 1− IoU(s, y). Intuitively, the first term of Eq. (18) quantifies the disparity between sampled predictions and the ground
truth labels, the second term—the diversity between the predictions, and the third term—the diversity between the ground truth labels. It is
important to note that the GED is a sample-based metric, and therefore the quality of the score scales with the number of samples. We
approximate the expectations with all 4 ground truth labels (y ∼ pD) and 16, 50 or 100 samples from the model (s ∼ qφ) for each input
image x.

As [32] have pointed out, even though the GED metric is a good indicator for how well the learnt predictive distribution fits a multimodal
ground truth distribution, it can reward high diversity in sampled predictions even if the individual samples do not show high fidelity to the
ground truth distribution. As an alternative metric that is less sensitive to such degenerate cases, [32] propose to use the Hungarian-matched
IoU (HM-IoU), which finds the optimal 1:1 IoU matching between ground truth samples and sampled predictions. Following [32], we
duplicate the set of ground truth labels so that the number of both ground truth and predicted samples are 16, and we report the HM-IoU as
the average of the best matched pairs for each input image.

In the main text we show the evaluated performance with both GED and HM-IoU metrics over the entire test set and compute the IoU on
only the foreground of the sampled labels and predictions. In the case where both the matched up label and prediction do not show a lesion,
the IoU is set to 1, so that a correct prediction of the absence of a lesion is rewarded.

Note that the methods of [4], [44] and [21], whose GED scores we report in Table 1, use test sets that differ from the original splits
defined in [31], which are used in [31, 32] and our work. [4] and [44] uses a random 60:20:20 split for the training, testing and validation
sets, and 100 samples to compute the GED score, whereas [21] use a random 70:15:15 split and 50 samples to compute the GED score.
Due to the lack of reproducibility, we do not consider this the conventional way of benchmarking. Therefore, in Table 1 we only report the
scores for our models evaluated on the original splits. Nevertheless, we also trained and tested our CAR model on the split methodology
defined by [4], and also used by [44], to enable a fairer comparison. This improved our GED score from 0.243± 0.004 to 0.228± 0.009,
while the HM-IoU, evaluated using 16 samples, remained similar at 0.590± 0.007 (in the original splits we achieved an HM-IoU score of
0.592± 0.005). This shows that different random splits can significantly affect the final performance w. r. t. GED score, while HM-IoU
appears to be a more robust metric.

A.4. Cityscapes
Architectures For the calibration network Fθ , we design a small neural network with 5 convolutional blocks, each comprised of a 3×3
convolutional layer, followed by a batchnorm layer and a leaky ReLU activation. The network is activated with a softmax function.

Training During training, we apply random horizontal flips, scaling and crops of size 128×128 on the image-label pairs. All of our
models were implemented in PyTorch and trained for 120k training iterations on a single 16GB Tesla V100 GPU.

We train all our models for the modified Cityscapes experiments using 32-dimensional noise vectors. Similarly to the LIDC experiments,
this value was empirically found to perform well, however, it can be further tuned. As commonly practiced, we use the ignore-masks
provided by the Cityscapes dataset to filter out the cross entropy, calibration and adversarial losses during training on the unlabelled pixels.
Similarly to our LIDC experiment, we use a weight of 10 for LG, and 5 for Lcal in the refinement networks loss.

Evaluation The GED metric for Cityscapes is implemented as described in the appendix of [31] and evaluated across the entire validation
set. In this dataset we have full knowledge of the ground truth class distribution and therefore we compute the GED metric by using the
probabilities of each mode directly, as follows:

D2
GED(pD, qφ) = 2Es∼qφ,y∼pD [d(s, y)w(y)]− Es,s′∼qφ

[
d(s, s′)

]
− Ey,y′∼pD

[
d(y, y′)w(y)w(y′)

]
, (19)

where w(·) is a function mapping the mode of a given label y to its corresponding probability mass. The distance d(s, y) is computed
using the average IoU of the 10 switchable classes only, as done in [31]. In the cases where none of the switchable classes are present in
both the ground truth label and the prediction paired up in d(s, y), the distance score is not considered in the expectation. We use 16 samples
to compute the GED score.

For the calibration results presented in Fig. 6, Section 4.2.2 in the main text, we compute the calibration network class-probabilities
using the raw predictions of Fθ(x). We obtain class masks by computing the overlap between the ground truth labels and the black-box
predictions for each class. Using these masks we then compute the average class-wise probabilities. The probabilities for the refinement
network Gφ were computed as the average over 16 samples. Here the class masks are obtained by finding the pixels that are specified as the
class of interest in the ground truth labels.

B. Additional experiment results
To reinforce the results reported in Section 4 we present supplementary results for the bimodal regression experiment and the LIDC and

Cityscapes segmentation experiments.

B.1. 1D bimodal regression
Fig. 8 shows the data log-likelihoods for the 9 data configurations for varying mode bias π ∈ {0.5, 0.6, 0.9} and mode noise σ ∈

{0.01, 0.02, 0.03} trained with and without the calibration loss Lcal. Each experiment is repeated 5 times and the individual likelihood
curves are plotted in Fig. 8b and Fig. 8d respectively. The results show that high bias is harder to learn, reflected by a slowed down
convergence, however, the CAR model shows greater robustness to weight initialisation. In contrast the non-regularised GAN exhibits mode
oscillation expressed as a fluctuation of higher likelihood (one mode is covered) and lower one (between modes).

−20

−15

−10

−5

0

π
=

0.
5

−20

−15

−10

−5

0

π
=

0.
6

0 100 200 300 400 500

σ = 0.01

−20

−15

−10

−5

0

π
=

0.
9

0 100 200 300 400 500

σ = 0.02
0 100 200 300 400 500

σ = 0.03

median
interquartile range

Mode spread

M
od

e
bi

as

(a)

−20

−15

−10

−5

0

π
=

0.
5

−20

−15

−10

−5

0

π
=

0.
6

0 100 200 300 400 500

σ = 0.01

−20

−15

−10

−5

0

π
=

0.
9

0 100 200 300 400 500

σ = 0.02
0 100 200 300 400 500

σ = 0.03

Mode spread

M
od

e
bi

as

(b)

−20

−15

−10

−5

0

π
=

0.
5

−20

−15

−10

−5

0

π
=

0.
6

0 100 200 300 400 500

σ = 0.01

−20

−15

−10

−5

0

π
=

0.
9

0 100 200 300 400 500

σ = 0.02
0 100 200 300 400 500

σ = 0.03

median
interquartile range

Mode spread

M
od

e
bi

as

(c)

−20

−15

−10

−5

0

π
=

0.
5

−20

−15

−10

−5

0

π
=

0.
6

0 100 200 300 400 500

σ = 0.01

−20

−15

−10

−5

0

π
=

0.
9

0 100 200 300 400 500

σ = 0.02
0 100 200 300 400 500

σ = 0.03

Mode spread

M
od

e
bi

as

(d)

Figure 8: Log-likelihood curves for 5 runs on each of the 9 data configurations. (a) No calibration loss (λ = 0), averaged.
(b) No calibration loss, individual runs. (c) With calibration loss (λ = 1), averaged. (d) With calibration loss, individual runs.

B.2. LIDC

B.2.1 Qualitative Analysis

To further examine the CAR model trained on the LIDC dataset, we illustrate representative qualitative results in Fig. 9 and Fig. 10. For
every input image x, we show the ground truth labels y1gt, . . . , y

4
gt provided by the different expert annotators, overlaying the input image, in

the first four columns, and 6 randomly sampled predictions y1ref, . . . , y
6
ref in the last six columns. From left to right, the three columns with

the dark blue background in the center of the figures show the average ground truth predictions ȳgt, the output of the calibration network
Fθ(x) and the average of 16 sampled predictions from the refinement network ȳref. Our results show that even though there is a significant
variability between the refinement network samples for a given input image, ȳref is almost identical to the calibration target Fθ(x), due to the
diversity regularisation enforced by the calibration loss Lcal.

0.00 0.25 0.50 0.75 1.00

(x, y1
gt) (x, y2

gt) (x, y3
gt) (x, y4

gt) ygt Fθ(x) yref y1
ref y2

ref y3
ref y4

ref y5
ref y6

ref

Figure 9: Qualitative results on LIDC samples for the CAR model.

0.00 0.25 0.50 0.75 1.00

(x, y1
gt) (x, y2

gt) (x, y3
gt) (x, y4

gt) ygt Fθ(x) yref y1
ref y2

ref y3
ref y4

ref y5
ref y6

ref

Figure 10: Qualitative results on LIDC samples for the CAR model.

From the qualitative results in Fig. 9 and Fig. 10, it can be seen that the calibration target Fθ(x) does not always precisely capture the
average of the ground truth distribution ŷgt, affecting the fidelity of the predictive distribution of the refinement network Gφ. This indicates
the importance of future work on improving the calibration of Fθ , e. g. implementing the approaches of [17, 34].

B.2.2 Tuning the number of refinement network samples

Method GED ↓ (16) GED ↓ (50) GED ↓ (100) HM-IoU ↑ (16)

cGAN+Lcal (1) 0.644± 0.033 0.643± 0.033 0.643± 0.033 0.494± 0.013
cGAN+Lcal (5) 0.278± 0.000 0.257± 0.002 0.252± 0.001 0.585± 0.003
cGAN+Lcal (10) 0.277± 0.003 0.257± 0.003 0.250± 0.003 0.589± 0.007
cGAN+Lcal (15) 0.271± 0.002 0.250± 0.001 0.245± 0.003 0.593± 0.002
cGAN+Lcal (20) 0.264± 0.002 0.248± 0.004 0.243± 0.004 0.592± 0.005

Table 3: Mean GED and HM-IoU scores on LIDC for the CAR model (Lcal-regularised cGAN) with 1, 5, 10, 15 and 20
samples. The number of samples used to compute the GED score is denoted in the parentheses in the header of each column.
The arrows ↑ and ↓ denote if higher or lower score is better.

To investigate the effect of the number of samples used to compute Lcal on the learnt predictive distribution, we experimented on the
CAR model using 5, 10, 15 or 20 samples from the refinement network Gφ during training. As a control experiment, we also train the
same model using one sample. Our results, reported in Table 3, show that increasing the number of samples improves the quality of the
predictive distribution, whereas using only one sample collapses it. This is expected because increasing the number of samples reduces the
variance of the sample mean Gφ and refines the approximation qφ of the implicit predictive distribution realised by Gφ(x, ε). Since in our
implementation we reuse the samples from Gφ in the adversarial component LG of the total refinement network loss LG, the discriminator
Dψ interacts with a larger set of diverse fake samples during each training iteration, thus also improving the quality of LG.

It is important to note that the benefit of increasing the sample size on the quality of Lcal highly depends on the intrinsic multimodality in
the data. In theory, if the number of samples used matches or exceeds the number of ground truth modes for a given input, it is sufficient to
induce a calibrated predictive distribution. However, we usually do not have a priori access to this information. Conversely, if the sample
size is too small, the Lcal loss may introduce bias in the predictive distribution. This could lead to mode coupling or mode collapse, as
exemplified in our control experiment with one sample.

In the LIDC dataset, even though we have access to four labels per input image, we argue that the dataset exhibits distributed multimodality,
where a given pattern in the input space, e. g. in a patch of pixels, can be associated to many different local labels throughout the dataset. As
a result, an input image may correspond to more solutions than the four annotations provided. Therefore increasing the number of samples
to more than four shows further improvement in performance. This however can come at the cost of decreased training speed which can be
regulated by tuning the sample count parameter while considering the system requirements.

B.2.3 Inducing multimodality in latent variable models on the LIDC dataset

To examine whether conditioning the source of stochasticity in our model on the input is beneficial, we adapt our framework in order to learn
a distribution over a latent code z, instead of taking samples from a fixed noise distribution ε ∼ N (0, 1), using variational inference [16].
Following most of the existing work on stochastic semantic segmentation [31, 32, 21, 4], we maximise a modified lower bound on the
conditional marginal log-likelihood, through a variational distribution q(z | x, y). This is realised by minimising the loss function in [19],
given by:

LELBO(x, y) = −Eq(z|x,y)[log p(y | x, z)] + βKL(q(z | x, y) || p(z)) ≥ − log p(y | x), (20)

where β controls the amount of regularisation from a prior distribution p(z) on the approximate posterior q(z | x, y). Both q(z | x, y) and
p(z) are commonly taken as factorised Gaussian distributions.

To this end, we compare our CAR model to two baselines where the refinement network Gφ is given as a cVAE-GAN [36]. In the first
one, we train Gφ by complementing the adversarial loss Ladv with Eq. (20), using β ∈ {0.1, 1, 10} and a fixed standard normal prior. In
the second, we introduce a calibration network and train Gφ using Eq. (7). Note that this does not necessitate specifying a prior.

For a fair comparison, we use the same core models for all of our experiments, introducing only minor modifications to the refinement
network to convert the deterministic encoder into a probabilistic one with Gaussian output. This is achieved by splitting the output head of
the encoder so as to predict the mean and standard deviation of the encoded distribution [30, 28]. Instead of using random noise sampled
from a standard Gaussian as our source of stochasticity, the decoder of the refinement network is now injected with latent codes sampled
from the Gaussian distribution encoded for each input image. To train the model, we pretrain the Fθ in isolation, and subsequently apply it
in inference mode while training Gφ. We use a batch size of 32, an 8-dimensional latent code, and use 20 samples to compute Lcal.

We show that the cVAE-GAN model trained with Lcal instead of the traditional complexity loss term, KL(q(z | x, y) || p(z))
from Eq. (20) is able to learn a distribution over segmentation maps, and performs similarly to the CAR model. This is important
because it abrogates the need for specifying a latent-space prior, which is often selected for computational convenience, rather than task
relevance [18, 40]. On the other hand, our cVAE-GAN models trained using the KL-divergence complexity term showed limited diversity,
even for large β values. The results, shown quantitatively in the bottom part of Table 4, and qualitatively in Fig. 11a, demonstrate that the

Method GED ↓ (16) GED ↓ (50) GED ↓ (100) HM-IoU ↑ (16)

cGAN+Lce 0.639± 0.002 — — 0.477± 0.004
CAR (ours) 0.264± 0.002 0.248± 0.004 0.243± 0.004 0.592± 0.005

cVAE-GAN (β=0.1) 0.577± 0.095 — — 0.484± 0.006
cVAE-GAN (β=1) 0.596± 0.078 — — 0.474± 0.005
cVAE-GAN (β=10) 0.609± 0.061 — — 0.482± 0.010
cVAE-GAN+Lcal (β=0) 0.272± 0.006 0.252± 0.006 0.246± 0.006 0.593± 0.003

Table 4: GED and HM-IoU scores on LIDC. The top section shows the Lce-regularised baseline and the CAR model; the
bottom section shows baseline and Lcal-regularised cVAE-GANs. All Lcal-regularised models are trained using 20 samples.
The three central columns show the GED score computed with 16, 50 and 100 samples, respectively. The last column shows
the HM-IoU score, computed with 16 samples. The arrows ↑ and ↓ indicate whether higher or lower score is better.

interaction between Ladv and Lcal can sufficiently induce a multimodal predictive distribution in latent variable models, and indicate that
for the purpose of stochastic semantic segmentation the use of a probabilistic encoder is not strictly required.

0.0 0.5 1.0

x y1
gt y2

gt y3
gt y4

gt ygt Fθ(x) yref y1
ref y2

ref y3
ref y4

ref y5
ref y6

ref

(a)

0.0 0.5 1.0

x y1
gt y2

gt y3
gt y4

gt ygt Fθ(x) yref y1
ref y2

ref y3
ref y4

ref y5
ref y6

ref

(b)

Figure 11: LIDC validation samples for the (a) cVAE-GAN and (b) cGAN+Lce baseline model.

B.3. Cityscapes

B.3.1 Qualitative Analysis

In this section we provide additional qualitative results for the CAR model trained on the modified Cityscapes dataset [31]. In Fig. 12, we
show 16 randomly sampled predictions for representative input images x, and their corresponding aleatoric uncertainty maps, obtained
by computing the entropy of the output of the calibration network, H(Fθ(x)), as done in [28]. The predicted samples are of high quality,
evident by object coherence and crisp outlines, and high diversity, where all classes are well represented. Our model effectively learns the

entropy of the ground truth distribution in the stochastic classes (sidewalk, person, car, vegetation and road), as their distinct entropy levels
are captured as different shades of red in the entropy maps, corresponding to the different flip probabilities (8/17, 7/17, 6/17, 5/17 and 4/17
respectively). Additionally, it can be seen that edges or object boundaries are also highlighted in the aleatoric uncertainty maps, reflecting
inconsistency during manual annotation, which often occurs on input pixels that are difficult to segment.

Fig. 13d shows the entropy of the predictive distribution of the refinement networkGφ, H
(
Gφ(Fθ(x))

)
, whereGφ(Fθ(x)) is computed as

the average of 16 samples fromGφ. Our results demonstrate that H
(
Gφ(Fθ(x))

)
is similar to H(Fθ(x)), depicted in Fig. 13c, as encouraged

by the Lcal regularisation. Notice that object boundaries are also highlighted in H
(
Gφ(Fθ(x))

)
, indicating that our model captures shape

ambiguity as well as class ambiguity. However, some uncertainty information from H(Fθ(x)) is not present in H
(
Gφ(Fθ(x))

)
, e. g. the

unlabeled
road2

vegetation2
car2

person2
sidewalk2

bicycle
motorcycle

train
bus

truck
car

rider
person

sky
terrain

vegetation
traffic sign
traffic light

pole
fence
wall

building
sidewalk

road

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
tr

op
y

(b
it

s)

unlabeled
road2

vegetation2
car2

person2
sidewalk2

bicycle
motorcycle

train
bus

truck
car

rider
person

sky
terrain

vegetation
traffic sign
traffic light

pole
fence
wall

building
sidewalk

road

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
tr

op
y

(b
it

s)

Figure 12: 10 input images, the corresponding aleatoric maps from the calibration network and 16 samples from the refinement
network. For visualisation purposes, the samples are split into 8 per row.

entropy of the different stochastic classes are not always consistent across images, as evident from the different shades of red seen for the
road class in Fig. 13d. We expect that increasing the number of samples from the refinement network will improve the aleatoric uncertainty
estimates. Nevertheless, the sample-free estimate extracted from Fθ(x) is cheaper to obtain and more reliable than the sample-based average
from Gφ, highlighting an important benefit of our cascaded approach.

Finally, we illustrate in Fig. 13e the high confidence of the predictions from the refinement network Gφ(Fθ(x)), reflected by their
low entropy, H(Gφ(Fθ(x))). This is attributed to the adversarial component in the refinement loss function, which encourages confident
predictions to mimic the one-hot representation of the ground truth annotations. Even though each prediction of the refinement network is
highly confident, the average of the predictions Gφ(Fθ(x)) is calibrated, as shown in Fig. 13d. This is a clear illustration of the advantage of
complementing the adversarial loss term LG with the calibration loss term Lcal in the training objective for the refinement network.

(a)

(b)

0.5

1.0

1.5

2.0

2.5

3.0

3.4

En
tr

op
y

(b
it

s)

(c)

0.5

1.0

1.5

2.0

2.5

3.0

3.4

En
tr

op
y

(b
it

s)

(d)

0.5

1.0

1.5

2.0

2.5

3.0

3.4

En
tr

op
y

(b
it

s)

(e)

Figure 13: (a) Three input images overlaid with the corresponding labels; (b) Incoherent samples from the predictive
distribution of the calibration network; (c) The aleatoric maps from the calibration network; (d) Aleatoric maps computed
as the entropy of the average of 16 predictions of the refinement network; (e) The entropy of one sample of the refinement
network output for each input image.

