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In this document, we present the details of our differen-
tiable multi-view consistency formulation, architecture de-
sign, and training strategies. Furthermore, we show addi-
tional qualitative results on the Ski-PTZ, H36M and Hand-
held190k datasets. We provide a video which can be ac-
cessed on https://youtu.be/bg3AYjTa1NY to ex-
plain the multi-view consistency setup and demonstrate the
Ski-PTZ and Handheld190k video results including the in-
termediate outputs of our method along with the detection
and segmentation predictions on consecutive frames for all
cameras and test subjects.

1. Implementation Details
1.1. Multi-view Consistency

Adjusting Bounding Box Centers. The candidate object
location proposed by the sampled grid cell in camera c is de-
fined as bc = [δx, δy, sx, sy] where δx, δy ∈ [0, 1] are the
offsets from the grid center and sx, sy ∈ [0, 1] are the width
and height of the bounding box respectively. The center lo-
cation of the proposal in pixel coordinates can be written
as

uc = W ∗ δx+ gx ,

vc = H ∗ δy + gy ,
(1)

where uc ∈ [0,W ], vc ∈ [0, H] and gx ∈ [0,W ], gy ∈
[0, H] denote the grid center in pixel coordinates. To reach
a multi-view consensus on the center of a 3D bounding box,
namely ū ∈ R3×1, we take into account the lines emerging
from camera positions oc ∈ R3×1 for each camera. The line
of sight for the proposal center is calculated as

lc = M−1c

 uc
vc
1

 , (2)

where lc represents all the points corresponding to the cen-
ter of the sampled box in world coordinates relative to the
camera center and Mc is the 3×3 matrix formed by the first
3 columns of the projection matrix Pc. Note that we use

bold symbols (lc) for vectors in 3D world space and normal
letters (u and v) for coordinates in the 2D image plane. The
unit direction vector for each of these lines is

nc =
lc
‖lc‖

, (3)

where nc ∈ R3×1. To find the nearest point ū to a set
of lines, we calculate the point with minimum distance to
them. Given that each line is defined by its origin oc and
the unit direction vector nc, the squared perpendicular dis-
tance from the point ū to one of these lines is given by

dc = (oc − ū)T (I− nc(nc)T)(oc − ū) , (4)

where the matrix (I − nc(nc)T) serves as the projector of
the line vectors into the space orthogonal to nc. By min-
imizing the sum of squared distances, we can obtain the
nearest point in the least squares sense for C cameras. The
objective we want to minimize is

C∑
c=1

dc =

C∑
c=1

(oc − ū)T (I− nc(nc)T)(oc − ū) . (5)

The derivative with respect to ū gives

C∑
c=1

−2(I− nc(nc)T)(oc − ū) = 0 , (6)

where I is the 3 × 3 identity matrix. Re-arranging this, we
obtain a system of linear equations

Aū = m ,

A =

C∑
c=1

(I− nc(nc)T) ,

m =

C∑
c=1

(I− nc(nc)T)oc ,

(7)

https://youtu.be/bg3AYjTa1NY


with A ∈ R3×3 and m ∈ R3×1. The optimum is achieved
at the least squares solution. Therefore, ū = lstsq(A,m)
and we use a differentiable implementation of lstsq function
to solve it.

The new center computed through multi-view consis-
tency is projected onto each view to update the value of the
2D bounding box centers. Thus,ūcv̄c

1

 = Mcū , (8)

where ū represents the coordinates of the new center in 3D
and {ūc, v̄c} are the updated 2D bounding box centers in
each view.

Adjusting Bounding Box Heights. Similarly, the top and
bottom points of the 2D bounding boxes can be subject to
the multi-view consistency. The top and bottom locations,
{ut,c, vt,c} and {ub,c, vb,c} respectively, of the bounding
box in camera view c are computed as

ut,c = W ∗ δx+ gx ,

vt,c = H ∗ δy + gy − (H ∗ sx)/2 ,

ub,c = W ∗ δx+ gx ,

vb,c = H ∗ δy + gy + (H ∗ sx)/2 .

(9)

To find the consensus top and bottom locations in 3D, we
apply the least squares solution explained in the previous
section separately to the top and bottom points. For the top
point, we consider the set of lines originating from camera
positions oc ∈ R3×1 for each camera. The line of sight for
the top and bottom points of the bounding box in camera
view c are given as

lt,c = M−1c

 ut,c
vt,c
1

 ,

lb,c = M−1c

 ub,c
vb,c
1

 .

(10)

To find the nearest point ūt to these lines, we apply
Eq. 3, 4, 5, 6 and 7. Finally, we obtain the updated pixel
location for the top point of the bounding box as followsūt,cv̄t,c

1

 = Mcūt . (11)

We update the 2D bottom location using the same multi-
view least-squares strategy.

1.2. Architectures

Our main network F consists of a detection and a syn-
thesis network that reconstruct the input scene against the
background image generated by the inpainting network.

Detection network. We predict one candidate bounding
box relative to each 2D grid cell in a regular 8 × 8 grid us-
ing a fully-convolutional architecture similar to YOLO [4].
We use a ResNet-18 backbone [1] without pre-training, that
reduces the input dimensionality by a factor 16, forming
a low resolution grid of features, e.g., to spatial resolution
8 × 8 from 128 × 128. The feature size is set to 5; two for
bounding box location offset δx, δy ∈ [0, 1] , two for scale
sx, sy ∈ [0, 1], and one for the probability p. Each feature
output represents the bounding box parameters predicted by
one grid cell, and the offset is relative to the cell center
{gx, gy}. The output p is forced to be positive and form
a proper distribution, with

∑N
i=1 pi = 1 where N = 64,

by a soft-max activation unit. To prevent this network from
constantly predicting bounding boxes at the borders of the
image, we zero out the outer cell probabilities.

Synthesis network. This network takes as input the
cropped image region corresponding to the sampled bound-
ing box and has the form of a bottle-neck auto-encoder,
based on the publicly available implementation of [6].
The encoding part is a 50-layer residual network, and the
weights are initialized with ones trained on ImageNet clas-
sification. The hidden layer is 856 dimensional, split into
a 600 dimensional space and a 256 dimensional space that
is replicated spatially to a 512 × 8 × 8 feature map to en-
code spatially invariant features. The decoding is done with
the second half of a U-Net architecture with 64, 128, 256,
512 feature channels in each stage. The final network layer
outputs four feature maps, three to predict the color im-
age Î ∈ R128×128×3 and one for the segmentation mask
S ∈ R128×128.

Inpainting network. The inpainting network is trained
separately for each dataset, from scratch and on the train-
ing split, without requiring any annotation. It is a 6 layer
U-Net model with 8, 16, 32, 64, 128, 256 feature channels
in each stage. It is trained independently from the rest of the
pipeline by feeding images with randomly occluded regions
of varying sizes. To compare the reconstructed image I′ to
the original one I, we use the L2 pixel reconstruction and
perceptual losses

Lreconst = ||I− I′||2 , (12)

Lperc = ||φ(I)− φ(I′)||2 , (13)

where φ(.) indicates the low level features obtained by pass-
ing its input to a pre-trained ResNet18 network. The pixel
reconstruction and perceptual losses are weighted 1:2.

We integrate the inpainting network to our full pipeline
and use it in an off-the-shelf manner. The input to the in-
painter is an image where the selected bounding box region
is hidden and the output is the entire image with the ini-
tially hidden patch being reconstructed. In our full pipeline,



the weights of the inpainting network are frozen and to re-
move the image evidence corresponding to the foreground
person, the hidden patch in the input image to the inpainting
network is selected to be the bounding box region expanded
by 15% in both dimensions.

1.3. Training Details

Overall training. We train our model with L2 pixel re-
construction and perceptual losses on the reconstructed im-
age F(Ic) and the L2 pixel reconstruction loss on the in-
painted background image Īc in view c . We rely on the
same prior terms as in [2] to regularize the predicted seg-
mentation masks and probability values for the voxels. We
use an Lseg prior, which encourages the mean value of a
segmentation mask to be larger than a threshold lambda but
small in general,

Lseg =

∣∣∣∣∣
(

1

WH

W∑
x

H∑
y

T −1(S)xy

)
− λ

∣∣∣∣∣+ λ , (14)

where λ is set to 0.005 and the notation is the same as in the
main paper. It encourages a non-zero segmentation mask
at the beginning of the training, when the decoder still pro-
duces non-perfect foreground, which improves and stabi-
lizes convergence. The voxel probabilities qj are regular-
ized with

Lq =

V∑
j

|qj | (15)

that favors only few voxels to have non-zero values. The
total training loss we minimize can be written as

Ltotal =− α
C∑

c=1

rj
‖Īc − Ic‖2

area(bc
ic(j))

+ β

C∑
c=1

rj‖F(Ic)− Ic‖2

+ γ

C∑
c=1

rj‖φ(F(Ic))− φ(Ic)‖2

+ η

C∑
c=1

Lc
seg + ζLq

(16)

where α = 0.1, β = 1, γ = 2, η = 0.25, ζ = 0.1 and φ(.)
indicates the low level features obtained by passing its input
to a pre-trained ResNet18 network. The first three terms
of Ltotal correspond to G(I1, . . . , IC), O(I1, . . . , IC) and
the perceptual version of O(I1, . . . , IC) defined in Section
3.1.4 of the main document.

As a baseline (Ours w/ TC), we report the results of us-
ing a L2 loss term to minimize the distance between lines
passing through the initial bounding box centers and camera
optical centers in each view.

All training stages are performed on a single NVIDIA
TITAN X Pascal GPU with Adam and a learning rate of
1e-3. First, the inpainting network is optimized for 100k
iterations and subsequently the complete network for an ad-
ditional 50k iterations. The decoding part of the synthesis
network uses a reduced learning rate of 1e-4, to prevent oc-
casional diverging behavior. We use a batch size of 48 and
an input image resolution of 640px×360px for the Ski-PTZ
and Handheld190k and 500px×500px for H36M.

Importance sampling. Sampling from a discrete distri-
bution is not differentiable with respect to its parameters.
Therefore, we integrate importance sampling as in [2].
However, instead of sampling from a 2D grid of cells, we
sample a voxel from a 3D grid of proposals. Importance
sampling allows us to introduce an auxiliary distribution k
that is used as the importance sampling distribution while
maintaining the differentiability and optimizing the voxel
probability distribution q. The relationship between k and q
can be expressed as

kj = qj(1− V ε) + ε (17)

for a voxel j, where (1 − V ε) determines the probability
of choosing a random voxel. In the multi-view setting,
the number of voxels that can be seen by all the cameras
change from one frame to another. Therefore the impor-
tance sampling related hyper-parameters must be adjusted
accordingly. As in [2], we take (1 − V ε) = 0.064 and to
satisfy this equality, we use an adaptive ε ≈ 0.0002, which
makes the method numerically stable while the probability
of choosing a random bounding box stays low, i.e., 6.4% for
on average V = 300 voxels that participate the multi-view
consensus voting. In Section 3.1.4 of the main document, rj
is the ratio of the probability qj by its importance sampling
probability kj .

Consistency. We demonstrate that the proposed training
strategy is stable and produces consistent results when re-
peated using the same configuration. To this end, we train
the best-performing model on the Ski-PTZ and H36M
datasets three times from scratch and provide the mean and
std of the scores on the test sequences. The J- and F- mea-
sures on the Ski-PTZ dataset are consistent, respectively,
0.71±0.006, 0.83±0.002 and the mAP0.5 score on H36M
dataset is 0.85± 0.004.

2. Qualitative Results
We present additional qualitative results on Ski-PTZ,

H36M and Handheld190k in Fig. 1, Fig. 2 and Fig. 3 re-
spectively. On Ski-PTZ, our method reliably detects the
skier even when there are other people in the scene and
our segmentation predictions cover the entire body and skis
more accurately than [7], relying on multi-view consistency



(a) Input/Ours detection (b) Yang et al. [7] (c) Koh et al. [3] (d) Katircioglu et al. [2] (e) Ours (f) GT

Figure 1. Qualitative results on the Ski-PTZ. (a) Input images with our predicted bounding box overlaid in red. (b) Segmentation mask
prediction of [7]. (c) Segmentation mask prediction of [3]. (d) Segmentation mask prediction of [2] (e) Our segmentation mask prediction.
(f) Ground truth segmentation mask. Note that, unlike our method, [3] and [7] use explicit temporal cues at inference time.



(a) Katircioglu et al. [2] (b) Rhodin et al. [5] (c) Ours (d) GT

Figure 2. Qualitative results on the H36M dataset. (a) The detection and segmentation mask results of Katircioglu et al. [2] trained and
tested on single images. (b) The results of [5] trained with a pair of camera views and tested on single images. (c) Our predictions obtained
from the model trained with the 4-cam multi-view consistency and tested on single images. (d) Ground truth.



(a) Katircioglu et al. [2] (b) Ours (c) GT
Figure 3. Qualitative results on the Handheld190k dataset. (a) The detection and segmentation mask results of [2] trained and tested on
single images. (b) The predictions of our model trained using 3-camera multi-view consistency and tested on single images. (c) Ground
truth. Our results are generally more accurate, which justifies the effort invested in calibrating the cameras.



during training, whereas [3] uses strong temporal cues both
during training and test time and [2] leverages optical flow
images during training. Due to the background objective,
our approach favors tight bounding boxes around the sub-
ject and this causes the auxiliary object moving with the
primary one to be partially included in the detection. There-
fore, compared to the ground truth masks, our predictions
do not contain the skis entirely. However, compared to other
baselines, our method can segment out the skis more pre-
cisely.

On H36M dataset, our method has more accurate hand
detections and lower legs are more precisely segmented
compared to [2] employing a single view approach with op-
tical flow images during training and [5] using multi-view
images during training for novel view synthesis. Even in the
rare cases of performing an action on the floor, our method
can still reliably detect the person. The failure cases include
the detections that miss the head and feet when the chair is
in close proximity to the subject. This is expected since the
chair is also hard to be reconstructed from its neighboring
regions and can be treated as a foreground object.

To demonstrate that our method can be applied to in-the-
wild scenes without initial camera calibration, we used the
OpenSFM software to calibrate 4200 frames out of 120000
training images in the Handheld190k dataset. We ran
OpenSFM with HaHOG (the combination of Hessian Affine
feature point detector and HOG descriptor) features and the
calibration took approximately 7 hours. We did not provide
masks for the moving objects. Nonetheless, we managed to
obtain accurate camera poses. Our results in Fig. 3 show
that when trained with a small calibrated part of the train-
ing set, our multi-view approach can detect and segment the
person more accurately than [2] which often fails to detect
the moving object precisely.

Although we target the detection of a single object or
person, our probabilistic framework can handle several of
them at test time by sampling more than once. In Fig. 4,
we show an example of this on Ski-PTZ, by synthetically
creating an image with two skiers. Our method trained on
single person images can accurately detect and segment two
skiers as long as they are sufficiently separated.

(a) Detection (b) Segmentation
Figure 4. Multi-person detection and segmentation at test time.
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