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In this supplementary material we give more details
about the computation of subject-specific offsets (Sec. 1),
describe training details of our proposed method (Sec. 2)
and the optimization and learning baselines (Sec. 3, Sec. 4),
provide details how we compute the accuracy of our EM
sensors (Sec. 5), provide more quantitative comparisons
(Sec. 6), show additional visualizations and failure cases
(Sec. 7), describe the detailed capture protocol of our test
set T (Sec. 8), and finally describe some initial experiments
how to tackle denoising of EM data (Sec. 9). For more vi-
sualizations, please also refer to the video.

1. Computation of Op

To take into account the subject-specific offsets, we re-
serve a “calibration sequence” taken from T for each of our
subjects. We use these sequences to extract per-sensor and
per-subject offsets Op. The following description holds for
each sensor s of subject p. We obtain os by first computing
m̃s on the calibration sequence following Eq. (3). This al-
lows us to solve for R(t) and t(t) in Eq. (4) at every time
step t, where we simply replace Rv

s and pv
s with the actual

real measurements.
Because R(t) and t(t) can vary over time, we extract a

single estimate as follows. For t we simply compute the
mean over all time steps. For R we compute the average
rotation over R(t).

t =
1

T

T∑
t=1

t(t) (1)

UΣV T = SVD(

T∑
t=1

R(t))

R = ϕ(U ,V ) (2)

where ϕ extracts a valid rotation as follows:

ϕ(U ,V ) = U · diag(1, 1, sign(det(UV T )) · V T (3)

Figure 8: Reconstructions with 6 sensors with the BiRNN
(middle row) and our best model, LGD RNN (bottom row).
Differences are described directly in the figure.

2. Training Details
2.1. Normalization

We normalize our data before feeding it to our method.
Since we assume that the root information is given we re-
move the root translation entirely by setting the SMPL root
translation to zero. Then, for every sequence, we normalize
the SMPL root orientation as follows (superscript n indi-
cates it is normalized data):

Rn
root(t) = R−1

root(0)Rroot(t)

Since the remaining SMPL pose parameters are all



Figure 9: MoSh++ results [7] when using 12 sensors as
input (middle row) compared to reference poses (top row)
and our method (LGD RNN) with 6 sensors (bottom row).

parent-relative, this is the only normalization we perform
for SMPL data. We apply the same normalization to the
marker data, i.e.

pn
s (t) = R−1

root(0)(ps(t)− troot(t))

Rn
s (t) = R−1

root(0)Rs(t)

2.2. Offset augmentation

As explained in Sec. 1, the computed offsets R(t) and
t(t) can vary over time. We use the translational part of
the offsets to introduce some noise for data augmentation
purposes during training. To do so, for every sensor and
every participant we fit a multi-variate normal distribution
to t(t), denoted as φ(t). When applying the offsets Op

as explained in Sec. 5.3 of the main paper we first draw
a vector t ∼ φ(t) which we then use as the translational
offset to obtain virtual sensors mv

s .

2.3. Architecture Details and Hyperparameters

The RNN in our proposed method, LGD RNN, consists
of two LSTM layers [2] of size 512. The output of the RNN
is mapped to pose and shape parameters Ω(0)

t with a dense
layer. The network N is essentially a multi-layer perceptron
(MLP). The MLP first maps its inputs, i.e. Ω(n)

t , to the cho-
sen hidden size, which is 512 in our case. The hidden repre-
sentation is then passed to L (here 5) dense layers whereas
each layer maps to the same dimensionality as the size of
its inputs (i.e. 512). Each dense layer is preceded by a batch

Hyperparameter LGD RNN 6 LGD RNN 12
α (LGD step size) 0.1 0.1
Batch size 12 12
Dropout (on inputs) 0.0 0.2
Dropout (inside MLP of N ) 0.0 0.2
λ1 (pose loss weight) 10.0 1.0
λ2 (shape loss weight) 1.0 1.0
λ3 (joint loss weight) 0.1 1.0
λ4 (reconstruction loss weight) 0.01 0.01
Learning rate 0.0005 0.0001
N (number of LGD iterations) 2 4
Number of epochs 50 50
Sequence length (training only) 32 32

Table 5: Hyperparameters for LGD RNN.

Hyperparameter ResNet 6/12 BiRNN 6/12
Batch size 16 16
λ1 (pose loss weight) 1.0 1.0
λ2 (shape loss weight) 1.0 1.0
λ3 (joint loss weight) 10.0 10.0
Learning rate 0.0005 0.0005
Number of epochs 50 50
Sequence length (training only) 128 128

Table 6: Hyperparameters for learning baselines.

normalization layer [4], a PReLU activation function [1],
and a dropout layer [11] in this order. The last dense layer
maps back to the target dimension and thus produces the
next estimate Ω

(n+1)
t .

We use the Adam optimizer [5] to train our models. The
choice of hyperparameters are listed in Tab. 5. We use
PyTorch 1.6 [8] and train all our models on a NVIDIA
GeForce GTX 1080Ti, which takes roughly 16 hours.

3. Optimization baseline
Here we explain the details of our optimization baseline

mentioned in Sec. 6.2 of the main paper. The objective func-
tion we minimize is argminΩt

Lr(xt,Ωt,Op), i.e. essen-
tially the same objective that LGD minimizes. However, to
induce a prior we operate directly in the latent space pro-
vided by VPoser [9]. This means the body parameters Ωt

are now split into (zt,β) where zt corresponds to the la-
tent space of VPoser. Furthermore, we add regularizers on
pose and shape. The objective function we minimize thus
becomes

argmin
zt,β

Lr(xt, zt,β,Op) + ρ1||zt||22 + ρ2||β||22 (4)

where we choose ρ1 = 10−6 and ρ2 = 10−2. We use Py-
Torch to run our optimization and use an LBFGS optimizer
with a step size of 1.0 and strong Wolfe line search.



Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
Ours 6 no t 44.0 ± 34.0 32.8 ± 22.3 15.8 ± 10.6
Ours 6 ori only 80.9 ± 81.4 53.5 ± 46.3 18.0 ± 13.6
Ours 6 pos only 38.6 ± 32.0 31.4 ± 25.2 17.7 ± 12.4
Ours 6 no RNN 44.4 ± 33.3 32.8 ± 23.9 16.2 ± 11.3
Ours 6 35.4 ± 21.3 27.0 ± 16.3 14.9 ± 10.0

Table 7: Ablation studies on our best performing 6-sensor
model.

4. Learning baselines
Here we describe the details of our learning-based base-

lines, ResNet and BiRNN, as described in Sec. 6.2 of the
main paper. Both baselines perform direct body parameter
regression, i.e. we obtain SMPL pose and shape estimates
Ω̂t directly from a neural network ν(xt). We use the same
data augmentation and preprocessing as for LGD RNN. The
loss function at time step t is the same in both cases:

Lt =λ1L1(θ̂t,θ
gt
t ) + λ2L2(β̂,β

gt) + λ3L3(Ĵ t,J
gt
t )

where L1,L3 are the MSE and L2 is the L1 loss. The archi-
tectural details are explained in the following and hyperpa-
rameters are listed in Tab. 6.

ResNet The ResNet baselines is a frame-wise architec-
ture inspired by [3]. One block consists of a dense layer
that maps to the same output size as the size of the inputs,
followed by a skip connection and a ReLU activation func-
tion. We use 5 such layers of dimension 1024. The output
of the last layer is mapped directly to Ωt.

BiRNN The BiRNN is a simple bidirectional RNN [10]
with LSTM cells [2]. We use 2 bidirectional layers of size
256 each. The hidden forward and backward states of the
last layer are mapped directly to Ωt.

5. Computation of EM-Tracking Accuracy
To compare our EM sensors to optical marker-based

tracking we glued an Optitrack rigid body to each of our
sensors (c.f . Fig. 2 of the main paper). Here we explain
in detail how we compute the disagreement between Op-
titrack and our sensors (c.f . Sec. 6.1 of the main paper).
As a reminder, for every sensor s and every time step t
we obtain four measurements: the Optitrack 6D pose, i.e.
pO
s (t) and RO

s (t), and the EM 6D pose, i.e. pM
s (t) and

RM
s (t). All measurements are calibrated to world space

and hence, under perfect agreement, a constant rigid trans-
formation [R | t] would relate the two. We characterize the
agreement by computing this rigid transformation and mea-
suring how much it changes over time as follows. For the

Figure 10: Failure cases. Inaccurate shape reconstruction
especially around abdomen (left) and challenging lower leg
orientations (middle and right).

positional agreement eposs (t) we simply compute the devia-
tion from the mean translational offset.

t =
1

T

T∑
t=1

pM
s (t)− pO

s (t)

eposs (t) = ||pM
s (t)− pO

s (t)− t||2

For the angular error eangs (t) we proceed similarly and
solve an orthogonal Procrustes problem to find the constant
rotation R that best relates RM

s and RO
s as follows:

UΣV T = SVD

(
T∑

t=1

(RM
s (t))TRO

s (t)

)
R = ϕ(U ,V )

eangs (t) = dist(RM
s (t)R,RO

s (t))

where ϕ is defined in Eq. (3) and dist(·) finds the closest an-
gle of rotation between its inputs. To do so we first convert
the rotation matrices to quaternions and then use:

dist(q1, q2) = cos−1
(
2⟨q1(t), q2(t)⟩2 − 1

)
6. More Quantitative Results
6.1. Comparison to RGB Methods

We compare our method to a state-of-the-art monocular
RGB-based pose estimator, VIBE [6]. To do so, we select
the camera facing the front of the subject as input to VIBE.
The results are shown in Tab. 8. The error is only computed
on frames for which VIBE detected a person. As we can
see, VIBE does not perform favourably on our data. This
is not unexpected because a) our imagery is a real in-the-
wild scenario and b) the inputs to VIBE and our method
are vastly different. Under these circumstances, VIBE still
performs admirably. We see this experiment as further mo-
tivation to employ EM-based systems to gather reference
data to boost RGB-based methods down the line.



Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]
VIBE [6] 100.3 ± 79.3 70.1 ± 58.2 24.8 ± 15.7
Ours (LGD-RNN) 6 36.4 ± 23.7 28.1 ± 16.9 13.6 ± 8.8

Table 8: Comparison to VIBE on 10 representative test
sequences from subjects 1-4.

6.2. Ablation Study with 6 Sensors

In Tab. 7 we provide the same ablation study as in
Sec. 6.3 of the main paper but with the 6 instead of the 12
sensor model. Based on this table we can see that the same
conclusions hold as already drawn in the main paper.

7. More Visualizations
To highlight the differences between our best model,

LGD RNN, and its closest baseline, BiRNN, we compare
their performance visually in Fig. 8. We can see that
the BiRNN sometimes produces interpenetrations and lacks
some accuracy at the end effectors.

Furthermore, we also compare the performance of
MoSh++ [7] in Fig. 9. The chosen frames highlight that
the shape estimates of MoSh++ are sometimes off by quite
a margin. This is because it makes different assumptions
about the sensor-to-skin offsets. Furthermore, the orienta-
tion of end effector segments often exhibit a high error in the
MoSh++ results. This is not unexpected since it only uses
12 positional estimates. In contrast, our best model (c.f .
bottom row in Fig. 9) produces more accurate limb orienta-
tions even with only 6 sensors as it uses both position and
orientation inputs.

We also show failure cases of our method in Fig. 10.
Shape estimation from just a few on-skin measurements is
challenging. We sometimes see bulging bellies (c.f . Fig. 10)
and inaccurate shape in the hip region (c.f . bottom right cor-
ner in Fig. 9). Getting the lower leg orientation correct in
extreme articulations is difficult, too, even with explicit ori-
entation measurements (c.f . Fig. 10). In addition, such er-
rors are visually very striking as they can cause foot sliding.

8. Test Set Details
We describe the detailed content and capture protocol of

our test set T in Tab. 9. All participants were guided by an
assistant, participated voluntarily and gave written consent
to record and publish their data.

9. Denoising Experiments
The data measured by our EM-based capture system can

be noisy. Typical sources of noise include dropped frames
(due to sensor malfunctions or wireless connections), in-
creased jitter when operating outside the calibrated range,
or unexpected magnetic distortion. Our proposed method,

Figure 11: Denoising architecture overview. Our archi-
tecture to estimate SMPL pose and shape with noisy input
measurements works in two stages. The first stage, called
joint mapper, maps EM data to 3D SMPL joints J t and
root-relative joint orientations Rt. This is a simple two-
layer BiRNN which we directly supervise with the ground-
truth joint positions and orientations. We randomly remove
one or several sensor measurements from the input for half
the duration of the given sequence. The second stage is per-
forming IK and uses the LGD framework to do so. The ori-
entations Rt help to disambiguate the orientation of bone
segments (especially so for end effectors). At training time
we use synthetic EM measurements mv

s to train the joint
mapper. Ground-truth joint positions Jgt

t and orientations
Rgt

t extracted from AMASS are used to train the IK stage.
At test time we simply feed the real EM data to the joint
mapper and the output of the joint mapper to the IK stage.

Figure 12: Denoising comparison. For this frame, the right
lower leg sensor is missing in the input. LGD RNN strug-
gles to reconstruct the pose (middle) whereas the two-stage
approach does a better job (right). Notice how the missing
sensor is affecting the entire pose output for LGD RNN.

LGD RNN, iteratively fits SMPL to the observed EM data.
Hence, it is clear that LGD RNN cannot handle certain types
of noise, such as dropped sensors. We find pose estima-



Action Type Description # Frames Minutes
Arms ROM Arm raises, arm swings, cross arms, clap hands front and back

with straight arms.
14, 109 7.8

Arms Fast Fast arm swings, pretend to play Beat Saber VR, punches, rotate
wrists around each other fast.

7, 169 4.0

Calibration Move head left to right and rotate wrists in T-Pose, move head
left to right and rotat rotate wrists when arms stretched in front,
one leg raise each.

3, 709 2.1

Head and Shoulders Nod head back and forth, move head left to right, roll head left
to right, rotate shoulders forwards and backwards, rotate torso,
bend over and move arms around.

9, 498 5.3

Jumping Jacks 3-5 jumping jacks. 1, 957 1.1
Lower Body Leg raises left and right, raise leg then rotate outwards, squats,

crouching
7, 305 4.1

Lunges Crouching, several lunges with left and right foot in front. 4, 714 2.6
Sitting on chair Grab a chair, sit on chair, move one leg over the other, pretend

to sit at a table and interact with PC, keyboard, touch screens.
9, 362 5.2

Walking Walk normally from left to right in capture area, side-stepping
from left to right with and without crossing over the legs.

8, 391 4.7

Total 66,214 36.8

Table 9: Test set T . Description and length of the sequences in our test set T . Each of the 5 participants performed the
actions described here in a single session. Each sequence starts and ends with a T-Pose.

Frames Model MPJPE [mm] PA-MPJPE [mm] MPJAE [◦]

all LGD RNN 12 33.3 ± 24.3 26.2 ± 18.8 13.4 ± 9.2
2-stage 12 38.8 ± 22.0 28.2 ± 17.3 13.8 ± 9.1

avail. LGD RNN 12 31.8 ± 21.0 24.8 ± 16.4 13.3 ± 9.2
2-stage 12 39.1 ± 21.3 28.1 ± 16.7 13.7 ± 9.1

miss. LGD RNN 12 45.6 ± 40.6 37.7 ± 30.0 15.0 ± 9.3
2-stage 12 36.2 ± 27.0 29.1 ± 21.9 14.6 ± 9.1

Table 10: Denoising experiments on all frames (all), only
on frames without missing sensors (avail.) and only on
frames with at least one missing sensor (miss.).

tion in such a noisy data regime an interesting direction for
future work and experimented with an initial architecture
that can cope with dropped frames and magnetic distortion
which we briefly describe in the following.

Although LGD RNN can handle some noise (by means
of incorporating pose priors), it is not meant to be a denois-
ing architecture per se as it fits SMPL pose and shape to
the inputs directly. Hence, our idea is to separate the tasks
of denoising and fitting into separate modules and came up
with a two-stage architecture. The first stage, also called
joint mapper, regresses SMPL 3D joint positions and root-
relative joint orientations from the input observations. In
this stage we randomly remove sensors from the input to
simulate dropped frames. Thus, the joint mapper maps to
a proxy representation that is close to SMPL while also de-
noising the inputs. The second stage then lifts the output
of the joint mapper to the final estimate of SMPL pose and

shape. This is again an LGD-based iterative fitting proce-
dure. Experimentally we have found that using LGD for
this stage outperforms an optimization-based IK step. Both
stages are trained independently. For an overview, please
refer to Fig. 11.

In our experiments we have found that this two-stage ar-
chitecture yields good results. The final SMPL poses are
smooth and with 12 input sensors 1-2 missing sensors are
compensated plausibly. This is also reflected in quantitative
comparisons shown in Tab. 10. In this table we compare
the two-stage approach to LGD RNN when using 12 sen-
sors. We report its performance on 3 sets of frames: frames
that have no missing sensors (avail.), frames with at least
one missing sensor (miss.) and the union of these two sets,
which corresponds to all frames in our test set (all). We ob-
serve that the two-stage approach does not beat LGD RNN
on the good frames where no sensor data is missing, but re-
mains competitive. It also trails behind LGD RNN on all
the frames, which makes sense since we have many more
“good” frames than frames with missing sensors. However,
on frames where at least one sensor is missing (miss. in
Tab. 10), the two-stage architecture shows its potential and
clearly outperforms LGD RNN. For a visual example of a
denoised frame please refer to Fig. 12.

The two-stage model is not only interesting to fill in
missing sensor data. If we assume we have a mechanism to
detect magnetic distortion, we can simply suppress the sen-
sor measurement for those time instances where magnetic



distortion is detected. We can then use the same two-stage
architecture to remedy the impact of EM interference. We
find this an interesting direction for exploration and release
code and data to foster future research.
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