
Appendices
A. Qualitative Examples

Two sets of figures are given to show qualitative examples
of our datasets and models. Figure 5 shows the explanations
generated by the models (and the ground-truth) for two im-
ages of each dataset. We also display the e-ViL SE score
of each generated explanation, which was obtained through
our human evaluation framework. In some of the images,
such as in Figures 5b and 5f, we can see that e-UG provides
better, more image-grounded explanations.

In Figure 6 we again show two images per dataset. These
examples illustrate the key differences between the different
datasets. VCR has many questions that require substantial
commonsense reasoning and general knowledge. For exam-
ple, to explain the answer to the question in Figure 6e, one
needs to know that person 1 is wearing a T-shirt of the classic
rock band Guns N’ Roses. For VQA-X (Figures 6c and 6d),
we show two examples where a generic explanation, that
is not necessarily grounded in the image, will often suffice
(this is a general limitation of this dataset). The explanation
“Because there is a person on a surfboard” and “Because
there is a bed in the room” will, in most cases, be correct
with respect to the question and answer, regardless of the
image. The examples for e-SNLI-VE in Figures 6a and 6b
both require the explanations to describe image-specific char-
acteristics in order to be meaningful. In Figure 6a, a valid
explanation would have to pick out a concrete element from
the image to explain why it is a contradiction.

B. e-SNLI-VE
This section contains a datasheet on e-SNLI-VE, as well

as further information on its pre-processing. Details on
the filters are given in Section B.4. Details on the MTurk
evaluation can be found in Appendix D.

B.1. e-SNLI-VE Datasheet
The questions in this section will be answered predomi-

nantly with respect to the changes that were applied on top
of (e-)SNLI, SNLI-VE, and Flickr30k. We use the datasheet
form from Gebru et al. [20].

B.1.1 Motivation

For what purpose was the dataset created? The dataset
was created for the purpose of extending the range of existing
VL-NLE datasets with a large-scale dataset that requires fine-
grained reasoning.
Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company, in-
stitution, organization)? The dataset was created by re-
searchers from the University of Oxford. It builds on existing

datasets which involved other institutions (NEC Laboratories
America for SNLI-VE) and universities (Stanford University
for SNLI, University of Illinois at Urbana-Champaign for
Flickr30k, University of Oxford for e-SNLI).

B.1.2 Composition

What do the instances that comprise the dataset repre-
sent (e.g., documents, photos, people, countries)? Pho-
tos (some with people) and natural language sentences.
How many instances are there in total? In total, there
are 430,796 instances.
Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from a
larger set? The dataset contains a reduced sample of the
original 570k sentence pairs from SNLI [10]. It has been
reduced because various filtering methods were applied to
remove noise that occurred from combining e-SNLI and
SNLI-VE. The filtering steps disproportionately affect the
“neutral” class.
What data does each instance consist of? Each instance
consists of an image, a natural language hypothesis, a label
that classifies the image-hypothesis pair as entailment, con-
tradiction, or neutral, and a natural language explanation that
explains why the label was given.
Is any information missing from individual instances?
No, all instances contain the complete the information de-
scribed above.
Are relationships between individual instances made ex-
plicit? Yes. Some instances refer to the same image, which
is indicated via their image ID.
Are there recommended data splits? Yes, the train, dev,
and test splits are given with the release of the dataset.
Are there any errors, sources of noise, or redundancies
in the dataset? The labels and explanations were origi-
nally annotated for textual premise-hypothesis pairs. By
replacing the textual premise with an image, noise occurs.
Despite our best efforts to filter out this noise, a considerable
error rate remains.
Is the dataset self-contained, or does it link to or other-
wise rely on external resources? The dataset needs to be
linked with Flickr30k images, which are publicly available.
Does the dataset contain data that might be considered
confidential (e.g., data that is protected by legal priv-
ilege or by doctor-patient confidentiality, data that in-
cludes the content of individuals’ non-public communi-
cations)? No.



Hypothesis: A dog is playing with a cat.
Relation: Contradiction
GT Explanation: A man running and a dog playing 
with a cat are two very distinct activities.
PJ-X: a dog is not a cat
FME: a dog is not a cat
RVT: A cat is not a dog.
e-UG: A dog is not a football player.

Human 
Evaluation:

0.00
0.17
0.00
0.56

(a) e-SNLI-VE.

Hypothesis: The lady is the owner of the store.
Relation: Neutral
GT Explanation: We cannot tell from this picture if the 
lady is the owner of the store.
PJ-X: a woman looking at a microscope does not imply 
that she is looking for the store
FME: a woman can be a man or a woman
RVT: Just because a lady is holding a book does not 
mean she is the owner of the store.
e-UG: Just because a lady is working at a store does not 
mean she is the owner.

Human 
Evaluation:

0.56

0.17
0.67

1

(b) e-SNLI-VE.
Vqax-all models good + generic explanation

Question: What sport are they playing?
Answer: tennis
GT Explanation: they are holding tennis rackets 
inside the court.
PJ-X: the man is holding a tennis racket
FME: they are holding tennis rackets
RVT: the man is holding a racket
e-UG: they are holding tennis rackets

Human 
Evaluation:

1
0.89
0.89
1

(c) VQA-X.

Question: What game is the guy playing?
Answer: frisbee
GT Explanation: he is about to catch one in his hand.
PJ-X: he is holding a frisbee
FME: the man is holding a frisbee
RVT: he is holding a disc
e-UG: he is throwing a frisbee.

Human 
Evaluation:

0.22
0.22
0.33
0.67

(d) VQA-X.

Question: What is 1 doing ?
Answer: 1 is confronting 3.
GT Explanation: 3 looks uncomfortable and 1 looks 
as if he is not happy.
PJ-X: 1 is looking at 3 with a smile on his face
FME: 1 is looking at 3 with a frown
RVT: 1 is looking at 3 with a look of anger on his face.
e-UG: 1 is facing 3 and is speaking to him.

Human 
Evaluation:

0.00
0.78
0.5
0.89

1

2
3

(e) VCR.

Question: What is in wineglass ?
Answer: There ' s champagne in wineglass.
GT Explanation: There 's a bottle of champagne near it.
PJ-X: there is a plate of food in front of her and she is 
holding a fork
FME: wineglass is a wine glass and wineglass is a wine 
glass
RVT: wineglass is a wineglass and wineglass is a 
wineglass.
e-UG: The glass is full of champagne and there is a 
champagne bottle in front of it.

Human 
Evaluation:

0.33

0.44

0.67

1

(f) VCR.

Figure 5: Pair of examples from the test set of each dataset. We display the ground-truth (GT) explanation, as well as the
generated explanations of each model and their predicted human evaluation score SE .



Hypothesis: The man rode his bike.    Relation: Contradiction

(a) e-SNLI-VE.

Hypothesis:  A male has a hat on.       Relation: Entailment

(b) e-SNLI-VE.

Question: What sport is this person doing?                Answer: surfing 

(c) VQA-X.

Question: What room is this?             Answer: bedroom

(d) VQA-X.

Question: What kind of music does 1 like? 
Answer: He likes classic rock.

1

(e) VCR.

Question: What is 2 doing?
Answer: 2 is communicating with someone outside of the room to give 
them instruction.

2

(f) VCR.

Figure 6: Representative examples from each dataset.



B.1.3 Collection Process

How was the data associated with each instance ac-
quired? Hypothesises and explanations were annotated
by people. SNLI-VE combined e-SNLI and Flickr30k by
replacing the textual premise by an image. This was possi-
ble because the textual premises in SNLI are all captions of
Flickr30k images. e-SNLI-VE was obtained by associating
the explanations from SNLI with SNLI-VE. We used MTurk
to reannotate the labels and explanations for the neutral class
in the validation and test set. Numerous validation steps
have been used to measure the effectiveness of merging,
re-annotating, and filtering the dataset.

What mechanisms or procedures were used to collect
the data (e.g., hardware apparatus or sensor, manual hu-
man curation, software program, software API)? Soft-
ware program and manual human curation.

B.1.4 Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? Var-
ious filters were used to remove noise. We used a false
neutral detector (details in Section 3.1), a keyword filter (de-
tails in Section 3.2), a similarity filter (details in Section 3.2),
and an uncertainty filter (details in Section 3.2). We also
reannotated all neutral examples in the validation and test
set.

B.1.5 Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization) on
behalf of which the dataset was created? The dataset is
publicly released and free to access.

B.1.6 Maintenance

Who is supporting/hosting/maintaining the dataset?
The first author of this paper.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)? The first author of this
paper can be contacted via the email address given on the
title page.

B.2. Relabeling e-SNLI-VE via MTurk
In this work, we collect new labels and explanations for

the neutral pairs of the validation and test sets of e-SNLI-
VE. We provide workers with the definitions of entailment,
neutral, and contradiction for image-sentence pairs and one
example for each label. As shown in Figure 7, for each

image-sentence pair, workers are required to (a) choose a la-
bel, (b) highlight words in the sentence that led to their label
decision, and (c) explain their decision in a comprehensive
and concise manner, using at least half of the words that they
highlighted. We point out that it is likely that requiring an ex-
planation at the same time as requiring a label has a positive
effect on the correctness of the label, since having to jus-
tify in writing the picked label may make annotators pay an
increased attention. Moreover, we implemented additional
quality control measures for crowdsourced annotations, such
as (a) collecting three annotations for every input, (b) inject-
ing trusted annotations, and (c) restricting to annotators with
at least 90% previous approval rate.

Figure 7: A snapshot of the annotation interface that was
used to manually reannotate the neutral labels in the valida-
tion and test sets of e-SNLI-VE.

Figure 8: A snapshot of the instructions that were provided
to the workers that reannotated the neutral labels in the vali-
dation and test sets of e-SNLI-VE.



There were 2,060 workers in the annotation effort, with
an average of 1.98 assignments per worker and a standard
deviation of 5.54. No restriction was put on the workers’
location. Each assignment consisted of a set of 10 image-
sentence pairs. The instructions are shown in Figure 8. The
annotators were also guided by three examples, one for each
label. For each assignment of 10 questions, one trusted an-
notation with known label was inserted at a random position,
as a measure to control the quality of label annotation. Each
assignment was completed by three different workers.

To check the success of our crowdsourcing, we manu-
ally assessed the relevance of explanations among a random
subset of 100 examples. A marking scale between 0 and 1
was used, assigning a score of k/n when k required attributes
were given in an explanation out of n. We report an 83.5%
relevance of explanations from workers.

B.3. Ambiguity in e-SNLI-VE
We noticed that some instances in SNLI-VE are ambigu-

ous. We show some examples with justifications in Fig-
ures 10, 9, and 11. In order to have a better sense of this
ambiguity, three authors of this paper independently anno-
tated 100 random examples. All three authors agreed on
54% of the examples, exactly two authors agreed on 45%,
and there was only one example on which all three authors
disagreed. We identified the following three major sources
of ambiguity: (1) mapping an emotion in the hypothesis to a
facial expression in the image premise, e.g., “people enjoy
talking”, “angry people”, “sad woman”. Even when the face
is seen, it may be subjective to infer an emotion from a static
image, (2) personal taste, e.g., “the sign is ugly”, and (3) lack
of consensus on terms such as “many people” or “crowded”.

In our crowdsourced re-annotation effort, we accounted
for this by removing an instance if all three annotator dis-
agreed on the label (5.2% for validation and 5.5% test set).
Otherwise we choose the majority label. Looking at the 18
instances where we disagreed with the label assigned by
MTurk workers, we noticed that 12 were due to ambiguity
in the examples, and 6 were due to workers’ errors.

B.4. Details on Filters
In Table 7, we provide a quantitative analysis of the ef-

fects our filters had on the dataset. The accuracies are ob-
tained from our hand-annotated subset of 535 examples. On
this subset, we first annotated every image-sentence pair as
Entailment, Neutral, or Contradiction. Accuracies are ob-
tained by comparing our own annotation with the dataset
annotation. Note that we obtain higher error rates for the
Entailment and Contradiction classes (9.7% and 8.6%) than
what the authors of the original paper found [48] (less than
1%). One explanation for that could be the ambiguity that
is inherent in the task. The share of bad explanations is
obtained by evaluating every explanation as bad, okay, or

Figure 9: Ambiguous SNLI-VE instance. Some may argue
that the woman’s face betrays sadness, but the image is not
quite clear. Secondly, even with better resolution, facial
expression may not be a strong enough evidence to support
the hypothesis about the woman’s emotional state.

Figure 10: Ambiguous SNLI-VE instance. The lack of
consensus is on whether the man is “leering” at the woman.
While it is likely the case, this interpretation in favour of
entailment is subjective, and a cautious annotator would
prefer to label the instance as neutral.

Figure 11: Ambiguous SNLI-VE instance. Some may ar-
gue that it is impossible to certify from the image that the
children are kindergarten students, and label the instance
as neutral. On the other hand, the furniture may be consid-
ered as typical of kindergarten, which would be sufficient
evidence for entailment.

great. If the label is wrong, the explanation is automatically
deemed bad, as it will try to explain a wrong answer.

Note that in e-SNLI, the authors have found that the
human annotated explanations have an error rate of 9.6%



(19.6% on entailment, 7.3% on neutral, 9.4% on contradic-
tion), which serves as an upper bound of what could be
achieved in terms of dataset cleaning.

An illustrative example for the motivation of the false
neutral detector is given in the main paper in Figure 2. Ex-
amples for the keyword and similarity filters are given in
Figures 12 and 13, respectively.

Textual premise: Older man 
sits and plays the accordion 
while young girl watches. 
Hypothesis: An old man plays 
an instrument while a young 
child watches.
Label: Entailment
Explanation: An accordion is a 
type of instrument, also “child” 
is a synonym for “young girl” 
and “old man” is a rephrasing of 
“older man”.

Figure 12: The use of the words “synonym” and “rephrasing”
makes it clear that the explanation is overly focused on the
linguistic features of the textual premise.

Textual Premise: A mother stands in a kitchen holding a 
small baby
Hypothesis: A mother is holding a small baby. 
Label: Entailment
Explanation: A mother standing in the kitchen holding a 
small baby is the same as a mother holding a small baby.

Figure 13: The textual premise and hypothesis are almost
identical sentences, which led to a low-quality explanation.

C. Benchmark Models
This section contains further details on the models that

are compared in this benchmark.

C.1. Model Architectures
PJ-X. The PJ-X model [37] provides multimodal explana-
tions for VQA tasks and was originally evaluated on VQA-X.

Its MT module consists of a simplified MCB network [18]
that was pre-trained on VQA v2.

We implemented PJ-X in PyTorch following closely the
authors’ implementation in Caffe5. To address numerical
optimization problems, we replaced the L2 normalization in
the decoder with LayerNorm [7], as the original normaliza-
tion zeroed gradients for earlier model parts. Additionally,
we added gradient clipping of 0.1 to prevent too large gradi-
ents. To adapt PJ-X for multiple-choice question-answering
in VCR, we follow the approach in the original VCR pa-
per [50].

FME. The model introduced by Wu and Mooney [46],
which we will refer to as FME (Faithful Multimodel Expla-
nations), puts emphasis on producing faithful explanations.
In particular, it aims to ensure that the explanation utilizes
the same visual features that were used to produce the answer.
Their code is not publicly available and we, therefore, re-
implemented their base model according to the instructions
in the paper. We chose the base model, as it was trained on
the entire VQA-X 29.5K train split and the modifications of
the other variations were difficult to re-implement from the
descriptions in the paper. Our re-implementation of FME is
based on a frozen modified UpDown [3] VQAv2 pre-trained
VL-model.

Similarly to PJ-X, we also train FME with a gradient
clipping of 0.1. To adapt FME for multiple-choice QA in
VCR, we follow the approach in the original VCR paper
[50].

RVT. The Rationale-VT Transformer (RVT) model [34]
uses varying vision algorithms to extract information from
an image and then feeds this information, the ground-truth
answer, and the question to a pre-trained GPT-2 language
model [38], which yields an explanation. As they omit the
question answering part, we extend their model by an answer
prediction module to allow for a fair comparison and to get
a sense of the overall performance. We use their overall
most effective visual input6, which are the tags of the objects
detected in the image. As task model MT , we use BERT
[16], which takes as input the object tags and the question,
and predicts the answer.

C.2. Joint or Separate Training.
All the VL-NLE models M in this work consist of MT

and ME modules, which can either be trained jointly or sep-
arately. For the RVT model, training jointly would make
no difference, as the explanation generation is not condi-
tioned on a learnable representation in MT (but instead on
the fixed object tags for each image). For all other models,

5https://github.com/Seth-Park/
MultimodalExplanations

6It obtained the highest visual plausibility score averaged across all
datasets.

https://github.com/Seth-Park/MultimodalExplanations
https://github.com/Seth-Park/MultimodalExplanations


Dataset Size Share of wrong labels Share of bad explanations

Train Set Val Set Test Set All E N C All E N C

Raw 529,505 17,554 17,899 19.3% 9.7% 38.6% 8.6% 35.7% 35.2% 45.1% 26.3%
FN removal 481,479 17,554 17,899 13.0% 9.7% 23.5% 8.6% 31.3% 35.2% 32.6% 26.3%

KW Filter 459,353 16,862 17,188 13.4% 10.1% 23.7% 8.8% 28.0% 28.3% 32.1% 24.6%
Uncertainty Filter 429,774 15,402 15,829 12.5% 10.1% 23.7% 4.5% 26.7% 28.3% 32.1% 19.5%
Similarity Filter 401,717 14,339 14,740 12.8% 10.5% 23.7% 4.5% 25.2% 24.1% 32.1% 19.5%

Table 7: Each row describes the state of the dataset upon application of the given filter. The share of wrong labels and bad
explanations is only representative of the training split. The first row describes the state of the dataset in its raw form, i.e.,
before any of the automatic filtering steps. The second row describes the state of the datasets upon application of the false
neutral (FN) removal filter, etc.

training jointly can be advantageous, because we backprop-
agate the explanation loss into the task model MT , but this
also comes at the risk of averse effects on the optimization
[14]. The authors of the PJ-X model mentioned that they
tried both training approaches, but they do not specify which
one worked best. Wu and Mooney [46] only trained sep-
arately. It should be noted that PJ-X and FME were both
solely run on VQA-X, where a much larger dataset VQA
v2 exists for task T . They pre-train MT separately on this
dataset, and it could be argued that, when training jointly,
MT runs the risk of becoming worse by overfitting on the
smaller dataset VQA-X. For e-SNLI-VE and VCR, no such
pre-training dataset exists. In this work, we train both jointly
and separately for every model.

C.3. Reproducing Previous Results

In this work, we reproduced three different models. The
code for RVT was publicly available and we only had to
add a classifier that is suited for the input type of RVT. The
code of PJ-X is also publicly available, albeit in an outdated
version of the Caffe framework, and therefore we translated
it into Pytorch. For FME no code is available and thus we
re-implemented their model (as much as possible) according
to the instructions given in the paper [46]. In Table 8 we
show that the NLG metrics of our re-implementations come
very close to those reported in the original papers.

For PJ-X and FME, we had to make a few minor devia-
tions from the original implementations. To address issues
with the gradients (vanishing and destabilizing) in PJ-X, we
changed the L2 normalization to layer normalization [7] in
the decoder, and added gradient clipping with a threshold
of 0.1. FME was re-implemented in contact with the first
author of the original paper. We re-implemented their “base”
model, which leaves out some of their model extensions.
This is motivated by the fact that these extensions either did
not lead to performance increases for us (their LF loss) or
are difficult to reproduce from the descriptions in the pa-

per (their dataset filter F). For the sake of standardization,
we use a ResNet-101 as feature extractor for both models.
We also tried a ResNet-152, but this had little effect on our
results.

C.4. Hyperparameters

In total, we have four models and three datasets. For
PJ-X and FME, we choose the same hyperparameters as the
authors across all datasets. For PJ-X, we also experimented
with larger learning rates, as we experienced convergence is-
sues. For RVT and e-UG, we conducted grid search on three
batch sizes, three learning rates, and three ways to combine
the loss. We compared dynamic weight loss [32] (with two
loss temperatures T = 2 and T = 0.5) with simply adding
both losses. However, this did not affect our results enough
to warrant the increase in complexity. We selected the best
configuration on VQA-X and then used these settings to
train on e-SNLI-VE and VCR. For BERT on VCR, we had
to use a higher batch size (128), as the results would not
have converged otherwise. The final hyperparameters for all
four models are reported in Table 9.

An additional overview of the differences between the
models is given in Table 10.

C.5. Adaptations for VCR

To accommodate for the multiple-choice nature of task T ,
we adapt the architectures accordingly. For UNITER, we
follow the original paper and formulate multiple-choice as
a binary classification of question-image-answer tuples as
True or False. The final answer is determined through a soft-
max of the four True scores. For PJ-X and FME, we follow
the approach in the original VCR paper and obtain the logit
for response j via the dot product of the final representa-
tion of the model and the final hidden state of the LSTM
encoding of the response rj [50]. For RVT, we use BERT-
FORMULTIPLECHOICE from the transformers library [45].



Model BLEU-4 METEOR ROUGE-L CIDEr SPICE

PJ-X [37] Original 19.8 18.6 44.0 73.4 15.4
Ours 20.1 18.3 43.0 71.8 15.3

FME [46] Original 23.5 19.0 46.2 81.2 17.2
Ours 20.8 19.2 44.8 77.9 16.7

Table 8: A comparison (under the same settings) of automatic NLG metrics on VQA-X between our re-implementations
(Ours) of PJ-X and FME and the results reported in the papers (Original).

PJ-X FME RVT e-UG

Batch Size 128 128 32* / 64 64
Learning Rate (LR) 7⇥ 10�4 5⇥ 10�4 5⇥ 10�5 2⇥ 10�5

Training Type JOINT* JOINT* SEPARATE JOINT
Loss Combination LT + LE LT + LE N.A. LT + LE

Optimizer Adam Adam AdamW AdamW for BERT
LR Scheduler - Step decay Linear w/ warmup Linear w/ warmup
Tokenization Word Word WordPiece WordPiece
Max Question Length 23 23 19 19
Max Answer Length 23 40 23 23
Max Explanation Length 40 40 51 51
Decoding Greedy Greedy Greedy Greedy

Table 9: Hyperarameters used for the different models across all datasets. LT and LE are the task loss and explanation loss,
respectively. For RVT, the task batch size for VCR is 128, as 32 did not lead to convergence. For PJ-X and FME, we trained
MT and ME separately on VQA-X.

Model
M

Vision
Backbone

VL Model
MT

Explanation Model
ME

ME Input

PJ-X ResNet-101 MCB LSTM (a) image features, question, answer
FaiMu ResNet-101 UpDown LSTM (b) image features, question, answer
RVT Faster R-CNN BERT GPT-2 object tags, question, answer
e-UG Faster R-CNN UNITER GPT-2 contextualized embeddings of image-question pair,

question, answer

Table 10: Summary of the model differences.

D. Human Evaluation Framework

An example of the instructions that were shown to the
MTurk annotators can be seen in Figure 14. The interface
through which the annotators evaluated the explanations is
displayed in Figure 15. The cost to evaluate one model on
one dataset is 108-117$.

E. Results

In this section, we present a benchmark evaluation with
automatic NLG metrics (E.1), extended results on e-SNLI-

VE performance (E.2) and different ways to compute the
e-ViL SE score (E.4).

E.1. Automatic NLG Metrics

We report the automatic NLG scores in Table 11. Those
are computed for all the explanations from the test sets where
the predicted answer was correct. A quick observation is
that the human evaluation results are not always reflected
by the automatic metrics. For example, on the VCR dataset,
FME, and not e-UG, obtains the highest SE score when
using automatic NLG metrics. Some tendencies are reflected
nonetheless, such as the fact that e-UG is the best model



Instructions

Overview

Thank	you	for	participating	in	this	HIT	and	contributing	to	my	PhD	research!	

The	goal	of	this	task	is	to	assess	the	quality	of	explanations.

An	explanation	justifies	an	answer	to	a	question.

This	HIT	contains	10	questions	about	images.	For	each	answer,	you	need	to	evaluate	the	quality	of	two	given	explanations.

Task	Description

1.	 First,	you	will	be	shown	an	Image	and	a	Question	about	the	image.

2.	 Then	you	need	to	choose	the	correct	answer	from	three	answer	choices.	Only	one	of	the	answers	is	correct	and	the

answers	are	known	to	us.	This	is	solely	to	make	sure	that	you	have	understood	the	image-question	pair	correctly.	You

will	not	be	able	to	submit	the	HIT	if	too	many	of	your	answers	are	wrong.

3.	 You	will	then	be	shown	two	explanations	that	each	try	to	justify	this	answer.	The	explanations	are	independent	of

each	other	and	their	order	is	meaningless!

4.	 For	each	of	the	explanations,	we	ask	two	evaluation	questions:

Given	the	image	and	the	question,	does	the	explanation	justify	the	answer?

If	any,	what	are	the	shortcomings	of	the	explanation?

Tips

Minor	grammatical	and	style	errors	should	be	ignored	(e.g.	case	sensitivity,	missing	periods,	a	missing	pronoun	etc.).

An	explanation	that	just	repeats	or	restates	the	statement	is	NOT	a	valid	explanation.

A	good	approach	to	evaluating	explanations	is	the	following:	Before	looking	at	the	explanations,	think	of	an

explanation	yourself	and	then	anchor	your	assessments	based	on	that.

Quality	checks	and	known	answers	are	placed	throughout	the	questionnaire!

Examples	(click	to	expand/collapse)

EXAMPLE	IMAGE:

EXAMPLE	Question:	Is	the	sea	calm?

1.	What	is	the	correct	answer?

	Yes

Figure 14: A snapshot of the instructions that were provided to the annotators that evaluated the explanations.

overall and that e-UG consistently outperforms RVT (albeit
by a small margin).

Question-only GPT-2. In order to verify our intuition that
the object labels used by RVT provide very little information
about the image, we trained GPT-2 that only conditions on
the question and answer, ignoring the image (called GPT-2
only in Table 11). Without having any image input, this
model closely shadows the performance of RVT on most
metrics. RVT is still slightly better in most cases, indicating
that the object labels do provide some minor improvement.
This suggests that RVT is not able to use visual informa-
tion effectively and learns the explanations mostly based off
spurious correlations and not based on the image.

E.2. Detailed Results for e-SNLI-VE
Here, we provide more detailed results on our newly re-

leased e-SNLI-VE dataset. We break down the task accuracy
and explanation scores by the three different classes (see
Table 12). For all models, we observe significantly lower ac-
curacies and explanation scores for the neutral class. There
are two potential explanations for this. First, the neutral class
can be harder to identify than the other classes. In image-
hypothesis pairs, entailment and contradiction examples can
sometimes be reduced to more straightforward yes/no classi-
fications of image descriptions. For the neutral class, there al-
ways needs to be some reasoning involved to decide whether
the image does (not) contain enough evidence to neither in-
dicate entailment nor contradiction. A second reason is that,
despite our best efforts to clean the dataset, the neutral class
is still more noisy and less represented in the training data.

E.3. Statistical Analysis of the SE Score

To ensure high quality of our results, we had a number
of in-browser checks that prevented the annotators from
submitting the questionnaire when their evaluations seemed
of poor quality. Checks include making sure that they cannot
simultaneously say that an explanation is insufficient (they
select the No or Weak No option described in Section 4) and
has no shortcomings, or that it is optimal (they select Yes
option), but has shortcomings. We also experimented with
further post-hoc cleaning measures (such as verifying that
they evaluated the ground-truth favorably or did not always
choose similar answers), but they had a negligible impact
and thus were disregarded.

Our MTurk sample consists of 19,194 evaluations, half of
which are for ground-truth explanations, and the other half
for model generated explanations. We obtain evaluations
for 264 to 299 unique question-image pairs for every model-
dataset combination, leaving us with explanations missing
for only 3.3% of questions. There are 82.1 evaluations per
annotator on average (SD = 170.1), ranging from 16 to
1,244 with a median of 34. After pooling annotations of the
same explanation, 6,494 annotations remain (887 to 897 for
the evaluations generated by each model).

In Figure 16, we add standard errors to the numerical
SE scores given in Table 3. This figure confirms that e-UG
uniformly outperforms the other models.

To further investigate the robustness of the e-ViL bench-
mark, we do a statistical analysis of our SE scores by using
a Linear Mixed Model (LMM) that predicts SE from the



e-ViL Scores (auto) n-gram Scores Learned Sc

VQA-X SO ST SE B1 B2 B3 B4 R-L MET. CIDEr SPICE BERTScore

PJ-X [37] 32.1 76.4 42.1 57.4 42.4 30.9 22.7 46.0 19.7 82.7 17.1 84.6
FME [46] 33.0 75.5 43.7 59.1 43.4 31.7 23.1 47.1 20.4 87.0 18.4 85.2
RVT [34] 26.8 68.6 39.1 51.9 37.0 25.6 17.4 42.1 19.2 52.5 15.8 85.7
GPT-2 only N.A. N.A. 37.8 51.0 36.4 25.3 17.3 41.9 18.6 49.9 14.9 85.3
e-UG 36.5 80.5 45.4 57.3 42.7 31.4 23.2 45.7 22.1 74.1 20.1 87.0
VCR

PJ-X [37] 7.2 39.0 18.4 21.8 11.0 5.9 3.4 20.5 16.4 19.0 4.5 78.4
FME [46] 17.0 48.9 34.8 23.0 12.5 7.2 4.4 22.7 17.3 27.7 24.2 79.4
RVT [34] 15.5 59.0 26.3 18.0 10.2 6.0 3.8 21.9 11.2 30.1 11.7 78.9
GPT-2 only N.A N.A 26.3 18.0 10.2 6.0 3.8 22.0 11.2 30.6 11.6 78.9
e-UG 19.3 69.8 27.6 20.7 11.6 6.9 4.3 22.5 11.8 32.7 12.6 79.0

e-SNLI-VE

PJ-X [37] 26.5 69.2 38.4 29.4 18.0 11.3 7.3 28.6 14.7 72.5 24.3 79.1
FME [46] 29.9 73.7 40.6 30.6 19.2 12.4 8.2 29.9 15.6 83.6 26.8 79.7
RVT [34] 31.7 72.0 44.0 29.9 19.8 13.6 9.6 27.3 18.8 81.7 32.5 81.1
GPT-2 only N.A. N.A. 43.6 29.8 19.7 13.5 9.5 27.0 18.7 80.4 32.1 81.1
e-UG 36.0 79.5 45.3 30.1 19.9 13.7 9.6 27.8 19.6 85.9 34.5 81.7

Table 11: Automatic NLG metrics for all model-dataset pairs. The SE based on automatic NLG metrics is the harmonic mean
that was used to select the best model during validation. B1 to B4 stand for BLEU-1 to BLEU-4, R-L for ROUGE-L, and
MET for METEOR.

Entailment Neutral Contradiction

Acc. MET. BERTS. Acc. MET. BERTS. Acc. MET. BERTS.

PJ-X 74.4 14.0 79.2 61.5 12.4 77.4 72.8 15.9 79.3
FME 77.3 15.1 79.8 67.3 13.5 77.9 77.2 16.3 79.8
RVT 74.6 17.9 81.3 63.3 19.0 80.7 79.4 19.4 81.4
e-UG 80.3 19.6 81.6 71.7 18.5 80.9 87.5 20.9 82.6

Table 12: Class-wise results on e-SNLI-VE for the different models. NLG metrics are only shown for METEOR and
BERTScore, as those correlate most with human judgement.

model-dataset pairs, with model as fixed factor and dataset
as random effect. LMM predicts the evaluations with the
Likelihood-Ratio-Test of the fixed effect being significant,
with �2(3) = 37.462, p < 0.001. To gain better insight, we
performed post-hoc pairwise contrasts, which indicate that
e-UG significantly outperforms the remaining models, with
p < 0.001. Further, RVT outperforms PJ-X significantly,
with p = 0.007. The significance level was adjusted for a
family-wise type I error rate of ↵ = 0.05 using Bonferroni-
Holm adjustments.

E.4. Alternative SE Scores

The nature of our human evaluation questionnaire allows
for multiple ways to compute the e-ViL score SE of the
generated explanations. The key differences between the
scoring methods are on how to pool the up-to-three evalua-
tions we have for each explanation, and how to compute the
overall numerical value. In the main paper, we compute SE

by mapping the four evaluation choices to numerical values,
then taking the average for every explanation in the sample
and then the sample average to get our SE score. Below, we
propose two alternative ways to compute SE . While they



Figure 15: A snapshot of the interface through which anno-
tators evaluated the explanations.

lead to different values, the performance differences between
our models remain relatively similar.

E.4.1 Median Pooling

In median pooling, we obtain the score for each explanation
by taking the median of its up-to-three ordinal evaluations
(as opposed to taking a numerical average). We always
interpolate with rounding off, meaning that the median of
(Yes, Weak Yes) 7! Weak Yes and (Yes, No) 7! Weak No.
This allows us to plot the distribution of No, Weak No, Weak
Yes, and Yes for every model-dataset pair, as displayed in
Figure 18.

We observe that e-UG performs better across all datasets,
with RVT following in second place for the VCR and VQA-

X datasets. The differences between the PJ-X, FME and
RVT are relatively small.

We analyse our results using a Cumulative Link Mixed
Model (CLMM) with a logit link and flexible thresholding.
We predict annotator responses using the dataset as random
effect and the VL-NLE model as fixed effect. We find that
the model significantly influences ratings, as suggested by
the Likelihood-Ratio-Test, �2(2) = 42.4, p < 0.001, when
comparing the full model to a nested statistical model that
is merely based on the dataset as predictor. The model pre-
dictor is dummy-coded with e-UG as reference class , which
enables us to interpret the model’s coefficients in the statis-
tical test as pairwise contrasts of all other models towards
e-UG. All coefficients have p-values p < 0.001, indicating
the e-UG significantly outperforms all other models.

E.4.2 Comparative SE Score

We also designed a comparative score, for which we do not
map our questionnaire evaluation options (No, Weak No,
Weak Yes, and Yes) to numerical values, but instead compare
them to the evaluation of the ground-truth. For every image-
question pair, the annotator has to evaluate both the ground-
truth and the generated explanation, without knowing which
is which. This enables us to see, for every generated explana-
tion, if it was deemed equally good, better, or worse than the
ground-truth. This mimics the approach in Park et al. [37]
and Wu and Mooney [46], where annotators were explicitly
asked if the generated explanation was worse, equally good,
or better than the ground-truth. An advantage of this method
is that we can seamlessly incorporate the criticalness of each
annotator. The disadvantage is that we do not get absolute
measurements of the quality of the explanations.

The generated explanation gets the score 1 if it is as good
or better than the ground-truth, and otherwise 0. We pool the
comparative score via median pooling with rounding off.

Figure 17 displays the comparative score. We can observe
that e-UG scores are strongest across all datasets, while the
other three models are performing similarly, except on the
VCR dataset, where PJ-X performs worse than the other
models.

For our statistical analysis, we fit a generalized linear
mixed model (GLMM) on the full unpooled annotation set
predicting the whether an explanation was rated positively
(compared to the ground-truth) using the dataset and annota-
tor as random effects and the VL-NLE model as fixed effect.
We utilise a logit link. The model parameter significantly
predicts the evaluations, with �2(3) = 67.366, p < 0.001.
Post-hoc tests (Tukey contrasts with Bonferroni-Holm ad-
justed significance) show that the e-UG outperforms all other
models, with p < 0.001, and that RVT outperforming PJ-
X at p = 0.011. All other pairwise comparisons were not
significant. Extending the model to include ground-truth
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Figure 16: Human evaluation framework: e-ViL scores SE . This plot shows the main e-ViL scores (based on numerical
average) for the different model-dataset pairs. Error bars show ±2SD/

p
n for each group.
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Figure 17: Human evaluation framework: Comparative scores. This figure displays the comparative scores (with respect to the
ground-truth) of the explanations for the different model-dataset pairs. Error bars show ±2SD/

p
n for each group.

explanations as a model category also demonstrates that all
model-generated explanations were evaluated significantly
worse than the ground-truth explanations. We conclude
that the e-UG outperforms all other models, whereas perfor-

mance differences between them are rather small, replicating
our findings from the alternative analyses.
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Figure 18: Human evaluation framework: Ordinal representation of the evaluations. Median responses for each question-
image pair given by participants to the evaluation question question “Given the image and the question/hypothesis, does the
explanation justify the answer?”.


