
Appendix for “MUSIQ: Multi-scale
Image Quality Transformer”

A. Transformer Encoder
A.1. Transformer Encoder Structure

We use the classic Transformer encoder [9] in our exper-
iments. As illustrated in Figure 1, the Transformer block
layer consists of multi-head self-attention (MSA), Layer-
norm (LN) and MLP layers. Residual connections are
added in between the layers.

In MST-IQA, the multi-scale patches are encoded as xn
k

where k = 0 · · ·K is the scale index and n is the patch
index in the scale. k = 0 represents the full-size image.
We then add HSE and SCE to the patch embeddings, form-
ing the multi-scale representation input. Similar to previous
works [2], we prepend a learnable [class] token embedding
to the sequence of embedded tokens (xclass).

The Transformer encoder can be formulated as:
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K ] (1)
z0 = [xclass;Ep +EHSE +ESCE] (2)
z′q = MSA(LN(zq−1)) + zq−1, q = 1 · · ·L (3)

zq = MLP(LN(z′q)) + z′q, q = 1 · · ·L (4)

y = LN(z0L) (5)

Ep is the patch embedding. EHSE and ESCE are the spa-
tial embedding and scale embedding respectively. l is the
number of patches from original resolution. m1 · · ·mK are
the number of patches from resized variants. z0 is the in-
put to the Transformer encoder. zq is the output of each
Transformer layer and L is the total number of Transformer
layers.

Figure 1. Transformer encoder illustration. Graph inspired by [3,
9].

A.2. Multi-head Self-Attention (MSA)

In this section we introduce the standard QKV self-
attention (SA) [9] (Figure 2) and its multi-head version
(MSA). Suppose the input sequence is represented by z ∈
RN×D, Q,K,V are its query, key, and value represen-
tations, respectively. They are generated by projecting
the input sequence with a learnable matrix Uq,Uk,Uv ∈
RD×Dh , respectively. Dh is the inner dimension for
Q,K,V. We then compute a weighted sum over V using
attention weights A ∈ RN×N which are pairwise similari-
ties between Q and K.

Q = zUq, K = zUk, V = zUv (6)

A = softmax(QKT /
√

Dh) (7)
SA(z) = AV (8)

MSA is an extension of SA where s self-attention opera-
tions (heads) are conducted in parallel. The outputs from
all heads are concatenated together and then projected to
the final output with a learnable matrix Um ∈ Rs·Dh×D.
Dh is typically set to D/s to keep computation and number
of parameters constant for each s.

MSA(z) = [SA1(z); · · · ;SAs(z)]Um (9)

Figure 2. Single head self-attention (SA) illustration.

A.3. Masked Self-Attention

Masking is often used in self-attention [2, 9] to ignore
padding elements or to restrict attention positions and pre-
vent data leakage (e.g. in causal or temporal predictions).
In batch training, we use the input mask to indicate the ef-
fective input and to ignore padding tokens. As shown in
Figure 2, the mask is added on attention weights before the
softmax. By setting the corresponding elements to −inf be-
fore the softmax step in Equation 7, the attention weights
on invalid positions are close to zero.

The attention mask is constructed as M ∈ RN×N where

Mi,j =

{
0 if attention posi → posj valid
−inf if attention posi → posj invalid

(10)



Then the masked self-attention weight matrix is calculated
as

Am = softmax((QKT +M)/
√
Dh). (11)

A.4. Different Transformer Encoder Settings

We use a lightweight parameters setting for Transformer en-
coder in the main experiments to make the model size com-
parable to ResNet-50. Here we also report the results from
different Transformer encoder settings. The model variants
are shown as Table 1. The MST-IQA-Small model is the
one used in our main experiments in the paper. The per-
formance of these variants on the AVA dataset is shown in
Table 2. Overall, these models have similar performance
when pre-trained on ImageNet [6]. Larger Transformer
backbones might need more data to pre-train in order to
get better performance. As shown in experiments from [3],
larger Transformer backbones get better performance when
pre-trained on ImageNet21k [1] or JFT-300m [8].

Hidden size MLP
Model Layers D size Heads Params

MST-IQA-Small 14 384 1152 6 27M
MST-IQA-Medium 8 768 2358 8 61M
MST-IQA-Large 12 768 3072 12 98M

Table 1. MST-IQA variants with different Transformer encoder
settings.

Model SRCC PLCC

MST-IQA-Small 0.916 0.928
MST-IQA-Medium 0.918 0.928
MST-IQA-Large 0.916 0.927

Table 2. Performance of different MST-IQA variants on the
KonIQ-10k dataset.

B. Additional Studies for HSE
B.1. Grid Size G in HSE

We run ablation studies for the grid size G in the proposed
hash-based 2D spatial embedding (HSE). Results are shown
in Table 3. Small G may result in collision and therefore the
model cannot distinguish spatially close patches. Large G
means the hashing is more sparse and therefore needs more
diverse resolutions to train, otherwise some positions may
not have enough data to learn good representations. One
can potentially generate fixed T for larger G when detailed
positions really matter (e.g. using sinusoidal function, see
Appendix B.2). With a learnable T , a good rule of thumb
is to let grid size times the number of patches P roughly
equals the average resolution, i.e. G×G× P × P = H ×

Spatial Embedding SRCC LCC

HPE (G = 5) 0.720 0.733
HPE (G = 8) 0.723 0.734
HPE (G = 10) 0.726 0.738
HPE (G = 12) 0.722 0.736
HPE (G = 15) 0.724 0.735
HPE (G = 20) 0.722 0.734

Table 3. Ablation study for different grid size G in HSE on AVA
dataset.

Learnable T Fixed-Sin T

G SRCC PLCC SRCC PLCC

10 0.726 0.738 0.719 0.733
15 0.724 0.735 0.716 0.730
20 0.722 0.734 0.720 0.733

Table 4. Comparison of sinusoidal HSE and learnable HSE matrix
on AVA dataset.

Patch Size 16 32 48 64

SRCC 0.715 0.726 0.713 0.705
PLCC 0.729 0.738 0.727 0.719

Table 5. Comparison of different patch size on AVA dataset.

W . Since the average resolution across 4 datasets is around
450×500 and we use patch size 32, we use grid size around
10 to 15. Overall, we find different G does not change the
performance too much once it is large enough, showing that
rough spatial encoding is sufficient for IQA tasks.

B.2. Sinusoidal HSE v.s. Learnable HSE

Besides the learnable HSE matrix T ∈ RG×G×D intro-
duced in the paper, another option is to generate a fixed
positional encoding matrix T using the sinusoidal function
as [9]. In Table 4, we show the performance comparison of
using learnable T or generated sinusoidal T with different
Grid size G. Overall, the learnable T gives slightly better
performance than that of the fixed T .

B.3. Visualization of HSE with Different G

Figures 3 and 4 visualize the learned HSE with G = 5 and
G = 15, respectively. Even with G as small as 5, the sim-
ilarity matrix corresponds well to the patch position in the
image, showing that HSE captures patch position in the im-
age.

C. Effect of Patch Size

We ran ablation on different patch size P , results are
shown in Table 5. In our settings, we find patch size P = 32
performs well across datasets.



Figure 3. Visualization of the grid of HSE with G = 5.

Figure 4. Visualization of the grid of HSE with G = 15.

D. The Maximum Number of Patches (l) from
Full-size Image

We run ablation with different l during training. As shown
in the Table 6, using large l in the fine-tuning can improve
the model performance. Since larger resolution images have
more patches than low resolution ones, when l is too small,
some larger images might be cutoff, thus the model perfor-
mance will degrade.

l SRCC LCC

128 0.876 0.895
256 0.906 0.923
512 0.916 0.928

Table 6. Comparison of maximum #patches l from full-size image
on KonIQ-10k dataset.

E. KonIQ-10k More Results
In our main experiment on KonIQ-10k, we followed

BIQA [7] and MetaIQA [10] to report the average of 10 ran-
dom 80/20 train-test splits to avoid the bias. On the other
hand, methods like KonCept512 [5] uses a fixed split in-
stead of averaging. In Table 7, we report our results using
the same fixed split. Images in KonIQ-10k are of the same
resolution and CNN models like KonCept512 usually need
a cherry-picked fixed size to work well. Unlike CNN mod-
els that are constrained by fixed size, MST-IQA does not
need tuning the input size and generalizes well for diverse
resolutions.

method SRCC LCC

KonCept512 [5] 0.921 0.937
MST-IQA (Ours) 0.924 0.937

Table 7. Results on KonIQ-10k dataset using same fixed split as
KonCept512 [5].

F. SPAQ Full-size Results
As mentioned in Section 4.1, we follow [4] to resize the raw
images such that the shorter side is 512 for a fair compar-
ison with the reference methods. Since our model can be
applied directly on the images without resizing, we also re-
port the performance on the SPAQ full-size test in Table 8
when training on the SPAQ full-size train. The results only
have very little difference.

SRCC PLCC

Full-size train and test 0.916 (±0.001) 0.919 (±0.001)
Resized train and test 0.917 (±0.002) 0.921 (±0.002)

Table 8. Comparison of MST-IQA train and evaluate on full-size
SPAQ dataset or the 512 shorter side resized SPAQ dataset.

G. Computation Complexity
For the default MST-IQA model, the number of param-

eters is around 27M. For a 224x224 image, its FLOPS is
8.86 × 109, which is at the same level as SOTA CNN-
based models (23M parameters and 3.8 × 109 FLOPS for
ResNet50). Training IQA takes 0.8 TPUv3-core-days on
average. MST-IQA is compatible with the efficient Trans-
former backbones like Linformer and Performer, which
greatly reduce the complexity of the original Transformer.
We leave model speedup as the future work.

H. Multi-scale Attention Visualization
To understand how MST-IQA uses self-attention to inte-
grate information across different scales, we visualize the



average attention weights from the output tokens to each
image in the multi-scale representation as Figure 5. We fol-
low [3] for the attention map computation. In short, the
attention weights are averaged across all heads and then re-
cursively multiplied, accounting for the mixing of attention
across tokens through all layers.



Figure 5. Visualizations of attention from the output tokens to the multi-scale representation. “Input” column shows the input image. “Attn
Full” shows the attention on the full-size image. “Attn L=384” and “Attn L=224” show the attention on the ARP resized images. Note that
images here are resized to fit the grid, the model inputs are 3 different resolutions.
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