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A. Augmenting to Existing Approaches

As described in Section 2 of the main paper, our pro-
posed approach can be easily integrated to any existing
scene graph generation architecture. In the experimental
analysis (Section 3), we demonstrate this by incorporating
our approach with MOTIF [55] and VCTree [45]. In this
section we present details on how these are implemented.

For an input image x
g 2 Dg , existing approaches like

[55, 45] use a pretrained object detector, like Faster R-
CNN [39], to generate proposal bounding boxes B

g . For
each proposal b

g
j 2 B

g , the pretrained object detector
also outputs a feature representation z

g
j (computed using

RoIAlign) and object label probabilities lgj . As described
in Section 2.3 of the main paper, our approach additionally
computes per class segmentation masks mg

j for each bound-
ing box b

g
j .

Our approach uses m
g
j as an additional input to the ob-

ject and relation networks, which differ in implementation
depending on the model architecture.

A.1. Integration with MOTIF

MOTIF [55] leverages recurring substructures in images
to generate accurate scene graphs. Therefore, to keep track
of global context, [55] instantiates the object and relation
networks using bidirectional LSTM networks.

Object Network. For the purposes of refining object la-
bels, MOTIF [55] constructs contextualized representations
based on the set of bounding boxes B

g . Boxes in B
g are

first sorted, ideally based on their x-coordinate position,
into a linear sequence [(bg

1, z
g
1, l

g
1), . . . , (b

g
n, z

g
n, l

g
n)]. This

sorted linear sequence is passed into a bidirectional LSTM,

C
g = biLSTM

⇣⇥
z
g
j ;Wl1l

g
j

⇤
j=1,...,n

⌘
(A1)

where C
g = {cg1, . . . , cgn} are the set of object context rep-

resentations for each bounding box in B
g , and Wl1 is a

learned parameter matrix. Each c
g
j 2 C

g corresponds to
the concatenation of the final hidden states of the bidirec-
tional LSTM for each element.

Our proposed approach, instead of using the segmenta-
tion agnostic representations zgj , utilizes the per class masks
m

g
j to compute a segmentation aware representation ẑ

g
j for

each bounding box b
g
j . These are obtained via a learned

network fN as described in Section 2.4 of the main pa-
per. The segmentation aware context object representations
Ĉ

g = {ĉg1, . . . , ĉgn} are then computed identically to Equa-
tion A1,

Ĉ
g = biLSTM

⇣⇥
ẑ
g
j ;Wl1l

g
j

⇤
j=1,...,n

⌘
(A2)

A decoder LSTM then utilizes the object representations
Ĉ

g to sequentially generate labels for each bounding box as
follows,

ĥ
g
j = LSTMj

�⇥
ĉ
g
j ; ô

g
j�1

⇤�

ô
g
j = argmax

⇣
Woĥ

g
j

⌘ (A3)

where ô
g
j are one-hot class labels for object bg

j , and Wo is
a learned parameter matrix.

Relation Network. Similar to the object network, MOTIF
[55] generates a contextualized representation for objects
for the purposes of relation prediction. Specifically, it com-
putes the edge context representation D

g = {dg
1, . . . ,d

g
n}

using a bidirectional LSTM using the segmentation agnostic
object context representations C

g and the subsequent ob-
ject labels obtained from the decoding step of the object
network.

Our proposed approach, on the other hand, uses segmen-
tation aware context representations Ĉ

g and object labels
Ô

g = {ôg
1, . . . , ô

g
n} in the relation network. Specifically,

we compute the segmentation aware edge context represen-
tation D̂

g as follows,

D̂
g = biLSTM

⇣⇥
ĉ
g
j ;Wl2ô

g
j

⇤
j=1,...,n

⌘
(A4)

where Wl2 is a learned parameter matrix.
In order to predict a possible relation between a pair of

boxes (bg
j ,b

g
j0), MOTIF [55], in addition to the edge con-

text representations, utilizes segmentation agnostic feature
representation z

g
j,j0 corresponding to the union of boxes

(bg
j ,b

g
j0).

To ground relations to pixel-level regions, our proposed
approach instead relies on the segmentation aware feature
representations ẑ

g
j,j0 , which are computed using a novel

Gaussian attention mechanism, as described in Section 2.5



PredCls SGCls SGDet

R@K mR@K R@K mR@K R@K mR@K

Model Detector Method @20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100

MOTIF†

VGG [41]
Baseline 58.2 64.9 66.8 13.7 17.5 18.9 32.0 35.2 36.0 7.5 9.2 9.8 21.1 26.9 30.0 5.2 6.8 7.9

Seg-Ground 57.0 64.0 65.9 14.6 18.7 20.3 30.6 34.1 35.0 7.9 9.8 10.5 22.2 27.5 29.9 5.6 7.3 8.1

ResNeXt-101-
FPN [34, 49]

Baseline 57.8 64.8 66.6 14.1 18.0 19.5 35.0 38.5 39.4 8.0 9.9 10.6 23.8 30.2 33.6 5.8 7.7 9.0

Seg-Ground 55.2 62.0 64.0 14.5 18.5 20.2 34.9 38.5 39.6 8.9 11.2 12.1 25.0 31.2 33.7 6.4 8.3 9.2

VCTree†
VGG [41]

Baseline 57.9 64.9 66.8 14.4 18.4 19.8 32.0 35.7 36.7 8.1 9.9 10.7 19.4 24.3 26.5 4.4 5.7 6.4

Seg-Ground 56.7 63.6 65.6 14.8 18.9 20.5 33.2 36.9 37.9 8.7 10.8 11.6 21.6 26.9 29.1 5.3 7.0 7.8

ResNeXt-101-
FPN [34, 49]

Baseline 58.1 64.8 66.7 13.7 17.4 19.0 35.4 38.9 39.8 8.1 9.9 10.6 22.9 29.1 32.3 5.3 6.9 7.9

Seg-Ground 55.3 62.2 64.3 15.0 19.2 21.1 37.5 41.2 42.2 9.3 11.6 12.3 24.7 30.8 33.5 6.3 8.1 9.0

Table A1. Quantitative Results. Table shows the R@K and mR@K comparison the baseline model and models augmented with the
proposed segmentation grounding.

Figure A1. Relation Wise Recall. Plot shows the relative difference in the recall of individual relations for a VCTree model trained with
the baseline method and one trained with the proposed methodology. A green(red) bar denote improvement(decrease) in performance when
using the segmentation grounding method. The x-axis is sorted by the sampling fraction of the relations in Visual Genome. We node that
our model performs better on relations with less annotation but suffer on generic annotations such as on, has etc. This explains why our
model has superior mR@K performance in PredCls but experience a drop in R@K.

of the main paper. Formally, the probability that the edge
will have a relation label rj!j0 is computed as follows,

ĝ
g
j,j0 =

⇣
Whd̂

g
j

⌘
�
⇣
Wtd̂

g
j0

⌘
� ẑ

g
j,j0

Pr (rj!j0) = softmax
⇣
Wrĝ

g
j,j0woj ,oj0

⌘ (A5)

where Wh, Wt, and Wr are learned parameters, and
woj ,oj0 is a bias vector specific to the labels oj and oj0 .

A.2. Integration with VCTree

VCTree [45], for a given image, dynamically generates
a binary tree, where each node corresponds to an object
within the image. The construction of this tree involves
running the Prim’s algorithm for maximum spanning tree
over a symmetric adjacency matrix S. For a particular
pair of nodes (j, j0), each element of S is defined using as
the product of the object correlation and the pairwise task-
dependency scores. Please see Section 3.1 in [45] for a de-
tailed explanation on how S is computed. Once this VCTree
is generated, a bidirectional TreeLSTM [43] is then used



Model Method
PredCls SGCls SGDet

@20 @50 @100 @20 @50 @100 @20 @50 @100

MOTIF† Baseline 13.9�0.2 17.8�0.2 19.3�0.1 7.9�0.1 9.5�0.4 10.3�0.3 5.7�0.1 7.1�0.6 8.2�0.6

Ours 14.6+0.1 18.5+0.0 20.1�0.1 8.7�0.2 11.0�0.2 11.8�0.3 6.3�0.1 8.2�0.1 9.1�0.1

VCTree†
Baseline 13.7+0.0 17.3�0.1 18.9�0.1 8.0�0.1 9.9+0.0 10.5�0.1 5.1�0.2 6.9+0.0 7.8�0.1

Ours 15.0+0.0 19.3+0.1 21.3+0.3 9.1�0.3 11.5�0.1 12.2�0.1 6.2�0.1 7.9�0.2 8.8�0.2

Table A2. Performance on Visual Genome Subset. Table shows the mr@K values computed on a Visual Genome test subset that does
not contain images from the MS-COCO training set. The results assume the ResNeXt-101-FPN backone [34, 49] trained models described
in Table 1 of the main paper. The relative deviation from the corresponding values in Table 1 of the main paper is shown using a red / green
superscript. A superscript +x implies a positive relative deviation from the values reported in Table 1 by x. Similarly, a superscript �x a
negative relative deviation by x.

Method
PredCls SGCls SGDet

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

No Refine 31.8+0.3 64.3+0.5 28.3+0.2 32.4�0.1 58.6�0.3 31.8+0.0 22.9�0.3 44.1�0.6 21.3�0.3

MOTIF† + Refine 42.8+0.4 78.4+0.3 41.3+0.4 37.5+0.0 63.3�0.2 38.9+0.1 24.4�0.3 45.3�0.5 23.6�0.3

VCTree† + Refine 42.3+0.4 78.0+0.4 40.6+0.3 37.3�0.1 63.0�0.4 38.7+0.1 24.6�0.3 45.6�0.5 23.8�0.3

Table A3. Performance on MS-COCO Subset. Table shows the standard AP values computed on a MS-COCO val subset that does not
contain images from the Visual Genome training set. The results assume the VGG-16 backbone [41] trained models described in Table 1 of
the main paper. The relative deviation from the corresponding values in Table 2 of the main paper is shown using a red / green superscript.
A superscript +x implies a positive relative deviation from the values reported in Table 2 by x. Similarly, a superscript �x a negative
relative deviation by x.

to capture global context, leading to improved scene graph
predictions.

Object Network. VCTree [45] utilizes a bidirectional
TreeLSTM to obtain contextualized representations for ob-
ject label refinement. Specifically, for a set of bounding
boxes B

g , the set of object context representations C
g =

{cg1, . . . , cgn} is computed as,

C
g = BiTreeLSTM

⇣⇥
z
g
j ;Wl1l

g
j

⇤
j=1,...,n

⌘
(A6)

where Wl1 is a learned parameter matrix. The bidirec-
tional TreeLSTM involves parsing the tree in a top-down
and bottom-up direction using two TreeLSTMs [43]. There-
fore, each c

g
j 2 C

g is computed as the concatenation of the
hidden states obtained from these two TreeLSTMs.

Similar to Section A.1, our proposed approach, utilizes
the per class masks m

g
j to compute a segmentation aware

representation ẑ
g
j for each bounding box b

g
j . These are

obtained via a learned network fN as described in Section
2.4 of the main paper. The segmentation aware context ob-
ject representations Ĉg = {ĉg1, . . . , ĉgn} are then computed

identically to Equation A6,

Ĉ
g = BiTreeLSTM

⇣⇥
ẑ
g
j ;Wl1l

g
j

⇤
j=1,...,n

⌘
(A7)

A decoder TreeLSTM [43] utilizes these C
g , and pro-

cesses the tree in a top-down fashion to sequentially gener-
ate labels for each bounding box as follows,

ĥ
g
j = TreeLSTMj

�⇥
ĉ
g
j ; ô

g
p

⇤�

ô
g
j = argmax

⇣
Woĥ

g
j

⌘ (A8)

where ô
g
j are one-hot class labels for object bg

j , Wo is a
learned parameter matrix, and c

g
p is the contextual embed-

ding corresponding to the j’s parent in the tree.

Relation Network. For relation prediction, VCTree [45]
first generates a contextualized representation for each ob-
ject. The edge context representation D

g = {dg
1, . . . ,d

g
n}

is computed using a bidirectional TreeLSTM, using the seg-
mentation agnostic object context representations Cg .

Our proposed approach instead uses segmentation aware
context representations Ĉg as input to the relation network.



Model Detector Method
Predicate Classification Scene Graph Classification Scene Graph Generation

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

MOTIF†
VGG-16 [41]

Baseline 13.7 17.5 18.9 7.5 9.2 9.8 5.2 6.8 7.9
Seg-Grounded 14.4�0.2

18.5�0.2
20.1�0.2

7.9+0.0
9.9+0.1

10.7+0.2
5.5�0.1

7.2�0.1
8.1+0.0

ResNeXt-101-
FPN [34, 49]

Baseline 14.1 18.0 19.4 8.0 9.9 10.6 5.8 7.7 9.0
Seg-Grounded 15.0+0.4

19.0+0.3
20.6+0.3

9.0+0.1
11.1�0.1

12.0�0.1
6.4+0.0

8.3+0.0
9.3+0.1

VCTree†
VGG-16 [41]

Baseline 14.4 18.4 19.8 8.1 9.9 10.7 4.4 5.7 6.4
Seg-Grounded 14.9+0.1 19.2+0.3

20.9+0.4
8.7+0.0

10.7�0.1
11.5�0.1

5.5+0.2
7.1+0.1

7.8+0.0

ResNeXt-101-
FPN [34, 49]

Baseline 13.7 17.4 19.0 8.1 9.9 10.6 5.3 6.9 7.9
Seg-Grounded 15.1+0.1

19.1�0.1
20.9�0.2

9.3+0.0
11.4�0.2

12.2�0.1
6.2�0.1

8.1+0.0
9.0+0.0

Table A4. Scene Graph Prediction on Visual Genome. Mean Recall (mR) is reported for three tasks, across two detector backbones.
Our approach is augmented to and contrasted against MOTIF [55] and VCTree [45], and trained using the MS-COCO subset described in
Section B. The relative deviation from the corresponding values in Table 1 of the main paper is shown using a red / green superscript. A
superscript +x implies a positive relative deviation from the values reported in Table 1 by x. Similarly, a superscript �x a negative relative
deviation by x. † denotes our re-implementation of the methods.

Detector Method
Predicate Classification Scene Graph Classification Scene Graph Generation

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

VGG-16 [41]
No Refine 31.8+0.3 64.3+0.5 28.3+0.2 32.4�0.1 58.6�0.3 31.8+0.0 22.9�0.3 44.1�0.6 21.3�0.3

MOTIF† + Refine 42.7+0.3
78.3+0.2

41.2+0.3
37.4�0.1 63.0�0.5

39.0+0.2 24.5�0.2 45.4�0.4 23.6�0.3

VCTree† + Refine 42.5+0.6 78.0+0.4 41.1+0.8 37.2�0.2
63.1�0.3 38.5�0.1

24.5�0.4
45.5�0.6

23.7�0.4

ResNeXt-101-
FPN [34, 49]

No Refine 55.0+0.2 88.1+0.5 58.7+0.4 51.4�0.2 76.5�0.2 56.4�0.5 38.7�0.5
60.6�0.6 41.9�0.5

MOTIF† + Refine 59.3+0.0
90.9+0.3 64.5�0.2 54.0�0.6 77.6�0.6 60.1�1.0

38.7�0.5 60.5�0.7
41.9�0.5

VCTree† + Refine 59.3+0.3 90.8+0.4
64.7+0.5

54.1�0.2
77.7�0.2

60.1�0.3 38.7�0.5 60.5�0.7 41.9�0.5

Table A5. Segmentation Refinement on MSCOCO. Standard COCO precision metrics are reported across three tasks and two detector
backbones. Task formulation is identical to Table A4. ‘No Refine’ is the baseline where the segmentation masks are obtained from the
pre-trained detector. Evaluation is performed on the MS-COCO subset that does not contain images from the Visual Genome training set.
The relative deviation from the corresponding values in Table 2 of the main paper is shown using a red / green superscript. A superscript
+x implies a positive relative deviation from the values reported in Table 2 by x. Similarly, a superscript �x a negative relative deviation
by x.

Specifically, the segmentation aware edge context represen-
tations Dg are computed as follows,

D̂
g = BiTreeLSTM

⇣⇥
ĉ
g
j

⇤
j=1,...,n

⌘
(A9)

To predict a relation between a pair of objects (bg
j ,b

g
j0),

VCTree [45] generates three pairwise features, which
are computed using segmentation agnostic edge features
(dg

j ,d
g
j0) and the union box features zgj,j0 .

To ground relations to pixel-level regions, our proposed
approach instead utilizes segmentation aware feature repre-
sentations d̂g

j , d̂
g
j0) and union box features ẑgj,j0 . The union

box features ẑgj,j0 are computed using a novel Gaussian at-
tention mechanism, as described in Section 2.5. Specifi-
cally, the probability that the edge will have a relation label
rj!j0 is computed as follows,

g
g
j,j0 = d̂j,j0 � ẑ

g
j,j0 � b

g
j,j0

Pr (rj!j0) = softmax
⇣
Wrĝ

g
j,j0woj ,oj0

⌘ (A10)

where Wr is a learned parameter matrix, and woj ,oj0 is a
bias vector specific to the labels oj and oj0 . Additionally,

d̂
g
j,j0 = fD

⇣h
d̂
g
j ; d̂

g
j0

i⌘

b
g
j,j0 = fB

⇣h
b
g
j ;b

g
j0 ;b

g
j [ b

g
j0 ;b

g
j \ b

g
j0

i⌘ (A11)

where fD and fB are learned networks, bg
j [ b

g
j0 corre-

sponds to the union box, and b
g
j \ b

g
j0 corresponds to the

intersection box.

A.3. Segmentation Refinement

Our proposed approach uses multi-task learning to si-
multaneously improve performance on both scene graph
and segmentation generation. To this end, as described in
Section 2.6 of the main paper, our proposed incorporates
an additional segmentation refinement head fM0 to improve
on the inferred masks. As segmentation annotations are un-
available in Dg , we use the dataset Dm to train fM0 . Specif-
ically, as described in Section 2.6, the refined masks m̂m

j for
a particular bounding box b

m
j 2 B

b is computed as,

m̂
m
j = m

m
j + fM0

�
z
o,m
j

�
(A12)



Class AP Class AP Class AP Class AP Class AP

Airplane 35.5+1.3 Apple 11.4+1.1 Backpack 7.6+0.7 Banana 10.5+1.2 Baseball bat 12.0�0.1

Baseball glove 27.2�0.0 Bear 56.6+0.9 Bed 22.0+1.6 Bench 10.1+0.7 Bicycle 11.8+1.5

Bird 17.4+1.0 Boat 12.5+1.2 Book 2.6+0.2 Bottle 24.1+1.6 Bowl 28.4+2.2

Broccoli 15.5+1.0 Bus 53.0+3.3 Cake 21.7+2.4 Car 26.8+4.6 Carrot 9.0+1.3

Cat 55.3+1.6 Cell phone 21.8+0.8 Chair 8.4+1.6 Clock 42.4+0.1 Couch 23.5+1.8

Cow 29.3+5.6 Cup 31.1+2.3 Dining table 10.9+0.9 Dog 46.9+1.8 Donut 25.4+5.0

Elephant 37.5+6.1 Fire hydrant 51.7+1.0 Fork 3.8+0.2 Frisbee 46.4+0.5 Giraffe 35.0+4.1

Hair drier 0.0+0.0 Handbag 5.8+0.1 Horse 30.1+1.7 Hot dog 11.0+0.3 Keyboard 35.1+1.8

Kite 14.3+0.4 Knife 1.6+0.2 Laptop 43.5+2.8 Microwave 42.6+0.3 Motorcycle 22.5+2.8

Mouse 44.4+0.4 Orange 20.2+2.7 Oven 19.8+1.1 Parking meter 39.6+2.0 Person 33.4+5.8

Pizza 40.0+1.3 Potted plant 14.8+0.7 Refrigerator 35.8+2.0 Remote 12.6+0.4 Sandwich 21.3+2.1

Scissors 7.5+2.0 Sheep 26.0+8.3 Sink 24.7+1.5 Skateboard 19.5+1.8 Skis 0.3�0.0

Snowboard 9.3+0.3 Spoon 1.8+0.1 Sports ball 28.2+0.2 Stop sign 52.9+0.9 Suitcase 17.3+3.2

Surfboard 17.7+0.7 Teddy bear 26.2+5.2 Tennis racket 40.2+0.3 Tie 15.8+0.4 Toaster 25.1+0.1

Toilet 47.3+2.5 Toothbrush 2.8�0.1 Traffic light 16.0+0.3 Train 53.2+1.3 Truck 24.9+2.0

Tv 45.8+1.8 Umbrella 30.2+3.4 Vase 23.6+1.9 Wine glass 18.4+1.6 Zebra 42.3+7.7

Table A6. Per Class Segmentation Improvement. Per class AP metrics are reported for our approach augmented to VGG-16 [41] based
VCTree [45] method. The table mentions the performance on the Scene Graph Generation task, and highlights the relative per-class
improvement from the baseline ‘No Refine’ approach described in Table 2. A superscript +x implies that our proposed approach is better
than the baseline on that class by x AP. A superscript �x implies that our proposed approach is worse than the baseline on that class by x
AP.

where z
o,m
j = ĉ

m
j . Note that, for an image x

m 2 Dm, ĉmj
is obtained by first extracting the proposal boxes Bm using
the object detector, and then passing the required inputs in
to the object network. This does not induce an additional
memory constraints as the parameters are shared between
both datasets Dg and Dm.

B. Information Leakage Analysis

As described in Section 3 of the main paper, we use MS-
COCO [29] as the auxiliary dataset Dm in our experiments.
As Visual Genome [24] and MS-COCO [29] have images
in common, there is a possibility of information across the
two datasets. In this section we empirically show that such
leakage is non-existent and provide a detailed analysis.

To highlight that there is no information leakage from
MS-COCO to Visual Genome, we evaluate the models
desribed in Section 4 of the main paper on a Visual Genome
test subset that does not contain images from the MS-
COCO training set. Assuming the ResNeXt-101-FPN de-
tector [34, 49], Table A2 shows the mean recall (mR) on
this reduced set, and also mentions the relative deviation
from the corresponding mR values in Table 1 of the main
paper.

Similarly, to show there is no leakage from Visual
Genome to MS-COCO, we evaluate trained models men-
tioned in Table 2 of the main paper on a MS-COCO val
subset that does not contain images from the Visual Genome
training set. To show that backbone choices do not induce

leakage either, results shown in Table A3 assume a VGG-16
[41] detector.

Finally, to further highlight that our joint training ap-
proach does not introduce any information leakage, we
re-train the models with a modified auxiliary MS-COCO
dataset to ensure there is no overlap between images.
Specifically, we remove any images contained in the Visual
Genome test set from the MS-COCO training set. Simi-
larly, any images contained in the Visual Genome train set
is removed from the MS-COCO validation set. As a conse-
quence, the modified MS-COCO train set contains 104, 723
images and the modified MS-COCO val set contains 3, 742
images. Table A4 reports the mean recall values comparing
the baseline and our proposed method trained on this mod-
ified dataset, and also highlights the relative deviation from
the values reported in Table 1 of the main paper. Similarly,
Table A5 reports the standard COCO evaluation metrics and
relative deviation from the numbers reported in Table 2.

In all the above experiments, the variations in the perfor-
mance of our proposed model is similar to that of the base-
lines on the modified evaluation and training subsets. Ad-
ditionally, the variations from the experiments done with-
out removing image overlap is minimal, confirming that the
leakage from one dataset to another is non-existent.

C. Additional Results

We report the complete results (Regular Recall and mean
Recall) of the baseline model and the proposed segmenta-



tion grounding framework in Table A1. For the SGCls and
SGDet mode we observe an almost consistent improvement
in the both the R@K and mR@K for both models across
both detectors. This improvement in performance can be
attributed to the improvement in the representations learned
from exploiting segmentation predictions and improvement
in the overall performance of the detector. For the PredCls
task, we note that the use of our proposed framework leads
to an improvement in the mR@K but a drop in R@K. This
behaviour is due to the long-tail distribution of annotations
in the Visual Genome dataset [44]. The use of our method
leads to models prediction more granular predicates such a
standing on, parked on as opposed to a generic re-

lation on. This effect can be seen observed in the qualitative
results in Figure A2 and relation wise recall in Figure A1.

We additionally report per class segmentation refinement
improvements on MSCOCO in Table A6 for our approach
augmented to VGG-16 [41] based VCTree [45] method on
the Scene Graph Generation task. It can be seen that our
proposed joint training significantly improves segmentation
performance across all classes. To analyse this further,
we also qualitatively visualize segmentation refinement im-
provements on MSCOCO in Figure A3. It can be seen that
our proposed multi-task learning visually improves segmen-
tation mask quality.



Figure A2. Qualitative Results. Visualizations of scene graphs generate using a VCTree baseline (in purple) and a VCTree model aug-
mented with proposed segmentation grounding framework (in green). The zero-shot triplets are indicated in yellow. We omit some nodes
and edges in the visualization where the baseline and the proposed model predicts the same relation for clarity.



Figure A3. Segmentation Refinement Qualitative Results. Visualizations show the improvements in segmentation masks by using
our proposed segmentation refinement on MSCOCO. For each pair of images, the one on the left shows the masks obtained by using
segmentation head fM (Section 2.3), and the one on the right shows the masks obtained after refinement by using fM0 (Section 2.6). For a
particular image, color is indicative of class label.
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