
Appendix A. Videos
A.1. Outdoor Scenes Dataset

The Outdoor Scenes video dataset includes seven pub-
licly available videos from Youtube, with 7–15 minutes in
duration. These videos span different levels of scene vari-
ability and were captured with four types of cameras: Sta-
tionary, Phone, Headcam, and DashCam. For each video,
we manually select 5–7 classes that are detected frequently
by our best semantic segmentation model (DeeplabV3 with
Xception65 backbone trained on Cityscapes data) at full res-
olution. Table 4 shows summary information about these
videos. In Figure 7 we show six sample frames for each
video. For viewing the raw and labeled videos, please refer
to https://github.com/modelstreaming/ams.

A.2. Prior Work Videos

In our experiments, we also evaluate AMS on three long
video datasets from prior work: Cityscapes [13] driving
sequence in Frankfurt (1 video, 46 mins long)5, LVS [46]
(28 videos, 8 hours in total), A2D2 [23] (3 videos, 36 mins in
total). Table 4 shows the summary information of the classes
present in each video in these datasets. Overall, LVS includes
fewer classes per video, and A2D2 and Cityscapes only
include driving scenes. Hence, we introduced the Outdoor
Scenes dataset that includes more diverse scenes and more
classes.

Appendix B. Other Related Work
Continual/Lifelong Learning. The goal of lifelong learn-
ing [41] is to accumulate knowledge over time [53]. Hence
the main challenge is to improve the model based on new
data over time, while not forgetting data observed in the
past [37, 42]. However, as the lightweight models have lim-
ited capacity, in AMS we aim to track the best model at each
point in time, and these models are allowed not to have the
same performance on the old data.
Meta Learning. Meta learning [19, 51, 20] algorithms aim
to learn models that can be adapted to any target task in a
set of tasks, given only few samples (shots) from that task.
Meta learning is not a natural framework for continual model
specialization for video. First, as videos have temporal co-
herence, there is little benefit in handling an arbitrary order
of task arrival. Indeed, it is more natural to adapt the latest
model over time instead of always training from a meta-
learned initial model.6 Second, training such a meta model
usually requires two nested optimization steps [19], which

5This video sequence is not labeled and was the only long video se-
quence available from Cityscapes (upon request).

6An exception is a video that changes substantially in a short period
of time, for example, a camera that moves between indoor and outdoor
environments. In such cases, a meta model may enable faster adaptation.

would significantly increase the server’s computation over-
head. Finally, most meta learning work considers a finite set
of tasks but this notion is not well-suited to video.
Federated Learning. Another body of work on improving
edge models over time is federated learning [43], in which
the training mainly happens on the edge devices and device
updates are aggregated at a server. The server then broad-
casts the aggregated model back to all devices. Such updates
happen at a time scale of hours to days [4], and they aim
to learn better generalizable models that incorporate data
from all edge devices. In contrast, the training in AMS takes
place at the server at a time scale of a couple of seconds
and intends to improve the accuracy of an individual edge
device’s model for its particular video.
Unsupervised Adaptation. Domain adaptation methods [2,
34] intend to compensate for shifts between training and
test data distributions. In a typical approach, an unsuper-
vised algorithm fine-tunes the model over the entire test data
at once. However, frame distribution can drift over time.
As our results show, one-time fine-tuning can have a much
lower accuracy than continuous adaptation. However, it is
too expensive to provide a fast adaptation (at a timescale
of 10–100 seconds) of these models at the edge, even using
unsupervised methods. Moreover, using AMS we benefit
from the superior performance of supervised training by run-
ning state-of-the-art models as the “teacher” for knowledge
distillation [30] in the cloud.

Appendix C. Impact of model capacity and
training horizon on online adap-
tation

AMS improves the performance of a lightweight model
on edge devices through continual online adaptation. There
exists a tradeoff in this approach between boosting the
model’s accuracy for the current data distribution and overfit-
ting, which degrades performance when the data distribution
changes. This tradeoff depends on the nature of the video
(how fast the scenes change) and the model capacity. For
instance, a low-capacity model may perform better with
frequent updates despite overfitting.

Prior work on online model adaptation for video largely
targets the overfitting regime: Just-In-Time [46] trains the
lightweight model when it detects accuracy has dropped
below a threshold, and it focuses its training on boosting
the model’s performance on the most recent frames. Just-In-
Time must therefore repeatedly retrain its model as scenes
change to maintain the desired accuracy. While this approach
is sensible when training and inference both occur on the
same powerful machine, it is impractical for online model
training at a remote server. As our evaluation results show
(§4.2), Just-In-Time’s approach requires very frequent model
updates, incurring a high communication overhead.

Dataset Description Classes

Outdoor Scenes

Interview Building, Vegetation, Terrain, Sky, Person, Car

Dance Recording Sidewalk, Building, Vegetation, Sky, Person

Street Comedian Road, Sidewalk, Building, Vegetation, Sky, Person

Walking in Paris Road, Building, Vegetation, Sky, Person, Car

Walking in NY Road, Building, Vegetation, Sky, Person, Car

Driving in LA Road, Sidewalk, Building, Vegetation, Sky, Person, Car

Running Road, Vegetation, Terrain, Sky, Person

A2D2 [23]
Driving in Gaimersheim Road, Sidewalk, Building, Sky, Person, Car

Driving in Munich Road, Sidewalk, Building, Sky, Person, Car

Driving in Ingolstadt Road, Sidewalk, Building, Sky, Person, Car

Cityscapes [13] Driving in Frankfurt Road, Sidewalk, Building, Sky, Person, Car

LVS [46]

Badminton Person

Squash Person

Table Tennis Person

Softball Person

Hockey Person

Soccer Person

Tennis Person

Volleyball Person

Ice Hockey Person

Kabaddi Person

Figure Skating Person

Drone Person

Birds Bird

Dogs Car, Dog, Person

Horses Horse, Person

Ego Ice Hockey Person

Ego Basketball Car, Person

Ego Dodgeball Person

Ego Soccer Person

Biking Bicycle, Person

Streetcam1 Car, Person

Streetcam2 Car, Person

Jackson Hole Car, Person

Murphys Bicycle, Car, Person

Samui Street Bicycle, Car, Person

Toomer Car, Person

Driving Bicycle, Car, Person

Walking Bicycle, Car, Person

Table 4: Summary of the video datasets and their target classes in evaluations.

Figure 7: Sample video frames. Rows (from top to bottom) correspond to Interview, Dance Recording, Street Comedian, Walking in Paris,
Walking in NY, Driving in LA, and Running.

We seek to avoid the need for frequent model updates by
training the model over a suitable time horizon — not too
short (which can lead to perpetual overfitting), but also not
too long (which can hurt accuracy). The key observation is
that although practical lightweight models (e.g., those cus-
tomized for mobile devices) lack the generalization capacity
of state-of-the-art models, they still have adequate capacity
to generalize over a narrower distribution of frames (e.g.,
video captured in the same street, a specific room in a house,
etc.).

To illustrate these issues, consider the model adaptation
framework described in §3 with two knobs: (i) Tupdate, the
model update interval; each Tupdate seconds the model is
trained and updated. (ii) Thorizon, the training horizon; each
update uses (sampled) frames from the last Thorizon seconds
of video to train the model. For effective model adapta-
tion, these two knobs are inter-dependent. When Thorizon

is small, the model updates tend to overfit and therefore
must be frequent (small Tupdate), while a larger Thorizon

can produce models that generalize better and maintain high
accuracy over a larger Tupdate interval. Picking too large of
a Thorizon, however, is also not ideal, as the model might not
have sufficient capacity to generalize over a wide distribution
of frames, reducing its accuracy.

Figure 8 illustrates this intuition for the video seman-

tic segmentation task. We consider two variations of the
lightweight model: (i) DeeplabV3 with MobileNetV2 back-
bone, (ii) a smaller version with the same architecture but
with half the number of channels in each convolutional layer.
We pick 50 points in time uniformly distributed over the
course of a video of driving scenes in Los Angeles. For each
time t, we train the two lightweight models on the frames
in the interval [t � Thorizon, t) and then evaluate them on
frames in [t, t+ Tupdate) (with Tupdate = 16 sec).

We plot the average accuracy of the two variants for
each value of Thorizon in Figure 8a. As expected, the
smaller model’s accuracy peaks at some training horizon
(Thorizon ⇡ 256 sec) and degrades with larger Thorizon as
the model capacity becomes insufficient. The default model
exhibits a similar behavior, but with a more gradual drop
for large Thorizon. Figure 8b shows the impact of training
horizon on the model update frequency required for high ac-
curacy. For the same driving video, we plot accuracy vs. the
model update interval (Tupdate) for the default model train-
ing using Thorizon = 16, 64, 256 sec. As expected, more
frequent model updates improves accuracy in all cases, but
the accuracy of models trained with a small training hori-
zon (Thorizon = 16 sec) drops much more sharply as we
increase Tupdate.

The best values of Thorizon and Tupdate depend on both

50 250 450

57
60
63
66
69
72 Default

2⇥ Smaller

Training horizon in sec

m
Io

U
(%

)

(a)

50 150 250

57
60
63
66
69
72

T
h
o
ri
zo

n

16

64

256

Update interval in sec
m

Io
U

(%
)

(b)

Figure 8: Impact of training horizon and model update interval on
the mean-intersection-over-union (mIoU) accuracy for semantic
segmentation.

0 100 200 300 400
0

0.5

1

�1

�0

Time (sec)

Sa
m

pl
in

g
R

at
e

(f
ps

)

Normal mode Slowdown mode

Figure 9: ATR updates of the model update intervals w.r.t. the
average sampling rate over time for Vid1. Vertical lines represent
model updates. Model updates become distant after entering the
slowdown mode.

the video and the model capacity. Overall we have found
that for semantic segmentation using mobile-friendly models,
a training horizon of 3–5 minutes works well with model
updates every 10–40 seconds across a variety of videos (§4).

Appendix D. Adaptive Training Rate (ATR)
We dynamically update the model update interval Tupdate

for each device based on its video characteristics. For this
purpose, for each interval n, we look at ASR’s sampling
rate decision rn (see §3.2). A small sampling rate typically
implies the scenes are changing slowly, and conversely a
large sampling rate suggests fast variations.

We introduce a slowdown mode to capture relatively sta-
tionary scenes. We enter the slowdown mode if the scenes
are highly similar, rn < �0, and exit this mode as variations
increase, rn > �1. Our implementation uses �0 = 0.25 fps
and �1 = 0.35 fps. We start at the maximum training rate
(Tupdate = ⌧min), and update the training interval every �t
seconds according to:

Tupdate(n+ 1) =

(
Tupdate(n) +�, in slowdown mode
⌧min, otherwise

(2)

2 4 6 8 10
�3

�2

�1

0

Number of clients

�
m

Io
U

(%
)

ATR Disabled
ATR Enabled

Figure 10: Average multiclient mIoU degradation compared to
single-client performance.

This rule gradually increases Tupdate by a fixed � (e.g.,
� = 2 sec) in slowdown mode, and aggressively resets it to
⌧min as soon as we exit the slowdown mode to catch up with
scene changes.

The sever communicates the newest Tupdate (and sam-
pling rate) with the edge so that the edge device can accord-
ingly synchronize its sample buffering and upload process
(see §3.2).

In Figure 9, we plot the behavior of ATR algorithm for
the Interview video with relatively stationary scenes from
Outdoor Scenes dataset. We observe that ATR enters the
slowdown mode after 150 seconds as the average sampling
rate goes below the entrance threshold �0, and it stays in
this mode as the scenes rarely change after this point. We
denote the model updates using the vertical lines in this plot.
ATR increases the distance between the model updates in the
slowdown mode to save the training cycles for other videos.

Appendix E. Server Utilization
Every user that joins a cloud server requires its own

share of GPU resources for inference and training opera-
tions. GPUs are expensive. At the current time, renting a
GPU like the NVIDIA Tesla V100 in the cloud costs at least
$1 per hour. Hence, it is important to use server GPU re-
sources efficiently and serve multiple edge devices per GPU
to keep per-user cost low.

In our prototype, we use a simple strategy that iterates in a
round-robin fashion across multiple video sessions, complet-
ing one inference and training step per session. By allowing
only one process to access the GPU at a time, we minimize
context switching overhead. In Figure 10 we show the de-
crease (w.r.t. single client) in average mIoU when different
number of clients share a GPU. We observe that even with a
simple round-robin scheduling algorithm, AMS scales to up
to 7 edge devices on a single V100 GPU with less than 1%
loss in mIoU without adaptive training rate (ATR) enabled.
Enabling ATR (see Appendix D) increases the number of
supported edge devices to 9. Note that these results depend
on the distribution of the videos and for this purpose, we have

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Avg. Sampling Rate (fps)

C
D

F

Figure 11: Cumulative distribution of average ASR sampling rate
across all videos.

assumed a uniform sampling of videos from the Outdoor
Scenes dataset and reported the average result of multiple
runs here. As most of the videos in this dataset (5 out of 7)
tend to experience relatively high levels of scene dynamic,
majority of videos get high training frequency. Hence, we ex-
pect to be able to support at least equal or even more devices
by prioritizing certain videos that need more frequent model
updates over the stationary ones in real-world distribution of
videos.

Furthermore, we note that ASR (see §3.2) also signifi-
cantly reduces the overhead of running teacher inference
over redundant frames at the server. The impact is partic-
ularly pronounced because the teacher model usually runs
at high input resolution and consumes a significant amount
of GPU time (up to 200 ms for labeling each frame on an
NVIDIA V100 GPU for the task of semantic segmentation).

Appendix F. Uplink Sampling Rate
Figure 11 shows the distribution of ASR’s average sam-

pling rate across different videos in four datasets. Notice that
we set the ASR’s maximum sampling rate (see §3.2), rmax,
to 1 fps as our results show sampling faster than 1 frame-per-
second provides negligible improvement in accuracy along
increasing bandwidth usage and server inference overhead.
We use rmin = 0.1 fps.

