
Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation

1. Multi-Instance Modulation Block (MIMB) Code
In this section, we describe the code of MIMB in PyTorch. The code in Listing. 1 outlines the details of functions

Fsq, Fex and Fem. Fsq is a simple global average pool and Fex and Fem are two-layered neural networks. MIMB can be
incorporated in any existing feature extraction backbone, with a relatively simple (< 15 lines) code change.

1 class MIMB(nn.Module):
2 def __init__(self, num_channels=c, reduce=r):
3 super(MIMB, self).__init__()
4 self.F_sqn = nn.AdaptiveAvgPool2d(1)
5

6 self.F_ex = nn.Sequential(
7 nn.Linear(c, c // r, bias=False),
8 nn.ReLU(inplace=True),
9 nn.Linear(c // r, c, bias=False),

10 nn.Sigmoid()
11 )
12

13 self.F_em = nn.Sequential(
14 nn.Linear(2, c // r),
15 nn.BatchNorm1d(c // r),
16 nn.ReLU(inplace=True),
17 nn.Linear(c // r, c),
18 nn.Sigmoid()
19 )
20 return
21

22 def forward(self, x, lambda):
23 b, c, _, _ = x.size()
24 y = self.F_sqn(x).view(b, c)
25 y = self.F_ex(y).view(b, c, 1, 1)
26

27 z = self.F_em(lambda).view(b, c, 1, 1)
28

29 out = x * y.expand_as(x) * z.expand_as(x)
30 return out

Listing 1: Code for MIMB.

2. Implementation Details
We merge all the instances from λ = 0 to N − 1 and then apply oks-nms. During the merger, we discount the confidence

of the instance λ = i by γi. As the primary instance (λ = 0) is always centralized in the input, this confidence discounting
avoids suppression of a high resolution primary predictions by a low resolution λ > 0 prediction. We use γ = 0.9 in all our
experiments.
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Figure 1: Illustration of HRNet-W32 backbone at input resolution 256⇥ 192. The blue blocks depict the four stages in the
architecture.
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Figure 2: Illustration of MIPNet with HRNet-W32 backbone at input resolution 256 ⇥ 192. We insert 5 MIMBs into the
HRNet, 4 MIMBs after Stage 3 and 1 MIMB after Stage 4.

MIPNet-HRNet: Figure. 1 shows the architecture details of HRNet [15]. For simplicity, we only show backbone HRNet-
W32 at input size 256⇥ 192, other HRNet backbones follow similar pipeline. Figure. 2 shows the architecture of MIPNet,
where multiple MIMBs are inserted at various stages.
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Figure 3: Illustration of SimpleBaseline architecture. The blue blocks represent the four blocks in the encoder of SimpleBase-
line.
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Figure 4: Illustration of MIPNet with SimpleBaseline architecture. We insert 2 MIMBs into the encoder after Block 3 and
Block 4.

MIPNet-SimpleBaseline: Figure. 3 shows the architecture details of SimpleBaseline [16]. Figure. 4 shows the architecture
of MIPNet, where multiple MIMBs are inserted in the encoder of the pose estimator.

3. Diminishing Returns with N = 3,4

We observed a small improvement in AP using N = 3 and N = 4 on top of N = 2 respectively on the datasets when
evaluated using ground-truth bounding boxes. This is consistent with the fact that most datasets have very few examples with
three or more ground-truth pose instances per bounding box (Refer data statistics in the paper). Note, on the more occluded
OCHuman dataset, increasing N gives better performance.

Inference COCO CrowdPose OCHuman
HRNet 78.1 72.8 65.0
MIPNet, N = 2 78.8 73.7 74.1
MIPNet, N = 3 78.4 73.9 74.3
MIPNet, N = 4 78.6 73.7 74.7

Table 1: Performance of MIPNet on val sets using ground truth bounding boxes with increasing N . We use the backbone
W48 with image resolution 384⇥ 288, and compare with the same HRNet configuration. By default, HRNet only predicts a
single instance.



4. Additional Results on COCO, CrowdPose and OCHuman
4.1. Additional results on COCO

Table 2 shows additional metrics for comparison between MIPNet (N = 2) and various baseline architectures on COCO
val dataset using ground truth bounding boxes for evaluation. We also report GFLOPs for each model. Note that for all
baseline evaluations for HRNet and SimpleBaseline, we follow the same protocol as outlined in the respective papers [15, 16].

Table 3 shows additional metrics for comparison between MIPNet and HRNet on COCO val and test datasets using
Faster-RCNN bounding boxes, provided by authors of [15] for evaluation. For HRNet, numbers are reported from their
paper [15] (some metrics are not provided).

4.2. Additional results on CrowdPose

Table 5 compares MIPNet to HRNet for various widths and image resolutions on CrowdPose val dataset using ground truth
bounding boxes. Similarly, Table. 6 compares MIPNet to HRNet on CrowdPose val and test datasets using Faster-RCNN
bounding boxes [14]. Note that, commensurate with increasing percentage of occlusions in the dataset, MIPNet consistently
does better than HRNet in most metrics on both datasets.

4.3. Additional results on OCHuman

Table 7 shows our detailed evaluations on the OCHuman val dataset using ground truth bounding boxes. As can be seen,
MIPNet outpeforms HRNet and SimpleBaseline on all metrics, with a maximum improvement of 10.5 AP over SimpleBaseline
(R − 50, 384⇥ 288) and 9.1 AP over HRNet (H − 48, 384⇥ 288).

Similarly, Table. 8 shows detailed results on the OCHuman val and test datasets using Faster-RCNN bounding boxes.
MIPNet achieves a state-of-the-art 42.5AP across both top-down and bottom-up pose estimation networks, to the best of our
knowledge. We show a 4.2 AP improvement over HRNet on val dataset and a 5.3 AP improvement over HRNet on test
dataset in this case.

4.4. Robustness to Bounding Box Confidence

Table 9 illustrates the number of Faster-RCNN bounding boxes as a function of minimum bounding box confidence. Notice
that a majority of all available bounding boxes (min. confidence = 0.0) have confidence < 0.4.

Method Arch Input Size GFLOPS AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

SBL R-50 256⇥ 192 8.90 72.4 91.5 80.4 69.7 76.5 75.6 93.0 82.3 72.3 80.4
MIPNet R-50 256⇥ 192 16.3 73.3 (+0.9) 93.3 81.2 70.6 77.6 76.7 94.2 83.4 73.4 81.6
SBL R-101 256⇥ 192 12.4 73.4 92.6 81.4 70.7 77.7 76.5 93.4 83.1 73.3 81.2
MIPNet R-101 256⇥ 192 23.1 74.1 (+0.7) 93.3 82.3 71.3 78.6 77.4 94.4 84.4 74.1 82.3
SBL R-152 256⇥ 192 15.7 74.3 92.6 82.5 71.6 78.7 77.4 93.8 84.2 74.4 82.0
MIPNet R-152 256⇥ 192 29.1 74.8 (+0.5) 93.3 82.4 71.7 79.4 78.2 94.6 84.9 74.7 83.2
SBL R-50 384⇥ 288 20.2 74.1 92.6 80.5 70.5 79.6 76.9 93.2 82.7 73.0 82.6
MIPNet R-50 384⇥ 288 36.7 75.3 (+1.2) 93.4 82.4 72.0 80.4 78.4 94.6 84.7 74.6 83.8
SBL R-101 384⇥ 288 27.8 75.5 92.5 82.6 72.4 80.8 78.4 93.6 84.5 74.9 83.8
MIPNet R-101 384⇥ 288 51.9 76.0 (+0.5) 93.4 83.5 72.6 81.1 79.1 94.8 85.6 75.5 84.5
SBL R-152 384⇥ 288 35.5 76.6 92.6 83.6 73.7 81.3 79.3 94.0 85.3 75.9 84.5
MIPNet R-152 384⇥ 288 65.4 77.0 (+0.4) 93.5 84.3 73.7 81.9 80.0 94.9 86.1 76.4 85.3
HRNet H-32 256⇥ 192 7.10 76.5 93.5 83.7 73.9 80.8 79.3 94.5 85.8 76.2 84.1
MIPNet H-32 256⇥ 192 9.80 77.6 (+1.1) 94.4 85.3 74.7 81.9 80.6 95.6 87.1 77.3 85.4
HRNet H-48 256⇥ 192 14.6 77.1 93.6 84.7 74.1 81.9 79.9 94.5 86.3 76.5 85.1
MIPNet H-48 256⇥ 192 20.7 77.6 (+0.5) 94.4 85.4 74.6 82.1 80.6 95.6 87.0 77.3 85.5
HRNet H-32 384⇥ 288 16.0 77.7 93.6 84.7 74.8 82.5 80.4 94.4 86.4 77.0 85.6
MIPNet H-32 384⇥ 288 22.1 78.5 (+0.8) 94.4 85.7 75.6 83.0 81.4 95.6 87.4 78.0 86.3
HRNet H-48 384⇥ 288 32.9 78.1 93.6 84.9 75.3 83.1 80.9 94.7 86.7 77.5 86.0
MIPNet H-48 384⇥ 288 46.5 78.8 (+0.7) 94.4 85.7 75.5 83.7 81.6 95.5 87.5 78.0 86.8

Table 2: Additional metrics for comparison between MIPNet and various architectures on COCO val set using ground-truth
bounding boxes for evaluation.



Method Arch Input Size AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

val
HRNet H-48 384⇥ 288 76.3 90.8 82.9 72.3 83.4 81.2 - - - -
MIPNet H-48 384⇥ 288 76.3 (+0.0) 90.6 83.0 72.1 83.3 81.4 94.2 87.6 76. 88.2

test
Bottom-Up

OpenPose [1] - - 61.8 84.9 67.5 57.1 68.2 66.5 - - - -
AE [10] - - 65.5 86.8 72.3 60.6 72.6 70.2 - - - -
PersonLab [11] - - 68.7 89.0 75.4 64.1 75.5 75.4 - - - -
MultiPoseNet [9] - - 69.6 86.3 76.6 65.0 76.3 73.5 - - - -

Top-Down

MaskRCNN [5] R-50 - 63.1 87.3 68.7 57.8 71.4 - - - - -
G-RMI [12] R-101 353⇥ 257 64.9 85.5 71.3 62.3 70.0 69.7 - - - -
CPN [2] R-Incep 384⇥ 288 72.1 91.4 80.0 68.7 77.2 78.5 - - - -
RMPE [4] PyraNet 320⇥ 256 72.3 89.2 79.1 68.0 78.6 - - - - -
HRNet H-48 384⇥ 288 75.5 92.5 83.3 71.9 81.5 80.5 - - - -
MIPNet H-48 384⇥ 288 75.7 (+0.2) 92.4 83.3 71.4 81.2 80.5 95.5 87.4 76.1 86.5

Table 3: Additional metrics for comparison between MIPNet and various architectures on COCO val and test set using
Faster-RCNN bounding boxes for evaluation.

Method Arch AP AP50 AP75

HRNet H-32 76.5 93.5 83.7
MIPNet H-32 77.44± 0.185 94.42± 0.039 85.32± 0.025
HRNet H-48 77.1 93.6 84.7
MIPNet H-48 77.84± 0.162 94.44± 0.079 85.4± 0.012

Table 4: We report mean ± std-dev of MIPNet over five runs on the COCO val set with ground-truth bounding boxes using
256⇥ 192 input resolution. H-@ stands for HRNet-W@ backbone.

Method Arch Input Size AP AP50 AP75 AR AR50 AR75 APeasy APmed APhard

HRNet H-32 256⇥ 192 70.0 91.0 76.3 73.9 92.6 79.4 78.8 70.3 61.7
MIPNet H-32 256⇥ 192 71.2 (+1.2) 91.9 77.4 76.1 94.4 81.7 78.8 71.5 63.8
HRNet H-48 256⇥ 192 71.3 91.1 77.5 74.8 92.4 80.5 80.5 71.4 62.5
MIPNet H-48 256⇥ 192 72.8 (+1.5) 92.0 79.2 77.4 94.8 83.0 80.6 73.1 65.2
HRNet H-32 384⇥ 288 71.6 91.1 77.7 75.0 92.6 80.4 80.4 72.1 62.6
MIPNet H-32 384⇥ 288 73.0 (+1.4) 91.8 79.3 77.9 94.8 83.4 80.7 73.3 65.5
HRNet H-48 384⇥ 288 72.8 92.1 78.7 76.3 93.3 81.4 81.3 73.3 64.0
MIPNet H-48 384⇥ 288 73.7 (+0.9) 91.9 80.0 78.4 94.8 84.0 80.7 74.1 66.5

Table 5: Additional metrics for comparison between MIPNet and various architectures on CrowdPose val set using ground-
truth bounding boxes for evaluation.

We compare the performance of MIPNet to HRNet as a function of varying minimum confidence on OCHuman test
dataset in Fig. 6 and val dataset in Fig. 5 (also shown in the paper). MIPNet is much more stable w.r.t bounding box
confidence thresholding, as compared to baseline networks like HRNet. We note that while MIPNet AP drops from 42.5
to 41.4 (1.1 AP drop) on test set at minimum confidence of 0.9, HRNet drops by more than 6 AP. This performance is
consistent with the performance on the val dataset (Fig. 4 in the paper).

5. Individual Instance Performance
It is interesting to compare the performance of each individual instances predicted by MIPNet in isolation. Since λ = 0

correspond to the primary instance (centered on the person), only using the primary instance for inference is expected to
give better results compared to only using λ = 1 instance during inference. In addition, we also expect λ = 0 instance to
provide similar performance as baseline top-down network, if used in isolation. Table 10 shows the performance of each



Method Arch Input Size AP AP50 AP75 AR AR50 AR75 APeasy APmed APhard

val
HRNet H-48 384⇥ 288 68.0 85.5 73.4 76.6 93.8 81.9 77.4 68.8 57.8
MIPNet H-48 384⇥ 288 68.8 (+0.8) 85.9 74.5 78.1 94.5 83.6 77.1 69.4 59.8

test
Bottom-Up

OpenPose [1] - - - - - - - - 62.7 48.7 32.3
HigherHRNet [3] HH-48 640⇥ 640 67.6 87.4 72.6 - - - 75.8 68.1 58.9
HghHRNet + UDP [7] HH-48 640⇥ 640 68.2 88.0 72.9 - - - 76.6 68.7 59.9

Top-Down, YOLO-v3

MaskRCNN [5] R-101 - 57.2 83.5 60.3 - - - - - -
SimpleBaseline [16] R-101 - 60.8 81.4 65.7 - - - - - -
AlphaPose+ [13] R-101 - 27.5 40.8 29.9 - - - - - -
OPEC-Net [13] R-101 - 70.6 86.8 75.6 - - - - - -
MIPNet R-101 384⇥ 288 68.1 85.2 73.8 75.1 92.3 79.2 74.6 69.2 53.4

Top-Down, Faster-RCNN

HRNet H-48 384⇥ 288 69.3 86.9 74.7 77.3 94.2 82.5 77.7 70.6 57.8
MIPNet H-48 384⇥ 288 70.0 (+0.7) 86.8 75.7 78.8 94.9 84.3 78.1 71.1 59.4

Table 6: Additional metrics for comparison between MIPNet and various architectures on CrowdPose val and test set
using Faster-RCNN and YOLO-v3 bounding boxes for evaluation.

Method Arch Input Size AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

SimpleBaseline R-50 256⇥ 192 56.3 76.1 61.2 66.4 56.3 61.0 78.0 65.9 70.0 61.0
MIPNet R-50 256⇥ 192 64.4 (+8.1) 86.0 70.4 66.8 64.6 72.3 91.5 78.5 71.4 72.3
SimpleBaseline R-101 256⇥ 192 60.5 77.2 66.6 68.3 60.5 64.7 79.6 70.1 72.9 64.7
MIPNet R-101 256⇥ 192 68.2 (+7.7) 87.4 75.1 67.0 68.2 75.5 92.9 82.1 74.3 75.5
SimpleBaseline R-152 256⇥ 192 62.4 78.3 68.1 68.3 62.4 66.5 80.2 71.8 74.3 66.5
MIPNet R-152 256⇥ 192 70.3 (+7.9) 88.6 77.9 66.9 70.2 77.0 93.0 84.1 72.9 77.0
SimpleBaseline R-50 384⇥ 288 55.8 74.8 60.4 64.7 55.9 60.7 78.0 65.2 71.4 60.7
MIPNet R-50 384⇥ 288 66.3 (+10.5) 87.5 72.2 66.0 66.3 74.1 92.7 80.3 71.4 74.1
SimpleBaseline R-101 384⇥ 288 61.6 77.2 66.6 62.1 61.6 65.8 79.4 70.5 72.9 65.8
MIPNet R-101 384⇥ 288 70.3 (+8.7) 88.4 77.1 64.1 70.4 77.7 93.4 84.0 72.9 77.7
SimpleBaseline R-152 384⇥ 288 64.2 78.3 69.1 66.5 64.2 68.1 80.4 73.0 74.3 68.1
MIPNet R-152 384⇥ 288 72.4 (+8.2) 89.5 79.5 67.7 72.5 79.6 94.1 86.2 71.4 79.6
HRNet H-32 256⇥ 192 63.1 79.4 69.0 64.2 63.1 67.3 81.9 72.4 68.6 67.3
MIPNet H-32 256⇥ 192 72.5 (+9.4) 89.2 79.4 65.1 72.6 79.1 93.6 85.2 71.4 79.1
HRNet H-48 256⇥ 192 64.5 79.4 70.1 65.1 64.5 68.5 81.6 73.7 68.6 68.5
MIPNet H-48 256⇥ 192 72.2 (+7.7) 89.5 78.7 66.5 72.3 79.2 94.2 85.4 70.0 79.2
HRNet H-32 384⇥ 288 63.7 78.4 69.0 64.3 63.7 67.6 80.8 72.6 70.0 67.6
MIPNet H-32 384⇥ 288 72.7 (+9.0) 89.6 79.6 66.5 72.7 79.7 94.3 86.1 70.0 79.7
HRNet H-48 384⇥ 288 65.0 78.4 70.3 68.4 65.0 68.8 80.6 73.4 71.4 68.8
MIPNet H-48 384⇥ 288 74.1 (+9.1) 89.7 80.1 68.4 74.1 81.0 94.4 87.0 72.9 81.0

Table 7: Additional metrics for comparison between MIPNet and various architectures on OCHuman val set using ground-
truth bounding boxes for evaluation.

individual instance mode of MIPNet with HRNet-W48 backbone at input size 384⇥ 288 on various datasets, using ground
truth bounding boxes. Note that when using only a single hypothesis from MIPNet for inference, performance of primary
instance (λ = 0) is similar to HRNet. When using multiple instances during inference, we get an improvement of 8.4 AP
(65.7 to 74.1 AP) on the OCHuman dataset.

6. Ablation: MIMB
In this section, we study the effect of ablation for MIMB. As outlined in the paper, MIMB consists of three operations

squeeze Fsq , excite Fex and embed Fem. Of the three operations, the embed operation Fem consumes the λ parameter that we



Method Arch Input Size AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

val
HRNet H-48 384⇥ 288 37.8 50.6 40.5 3.8 40.4 69.9 89.0 73.9 67.1 69.9
MIPNet H-48 384⇥ 288 42.0 (+4.2) 51.2 45.6 3.2 43.5 82.5 96.7 88.5 71.4 82.5

test
Bottom-Up

AE [10] Hourglass - 29.5 - - - - - - - - -
AE-multiscale [10] Hourglass - 32.8 - - - - - - - - -
HGG [8] Hourglass - 34.8 - - - - - - - - -
HGG-multiscale [8] Hourglass - 36.0 - - - - - - - - -

Top-Down, YOLO-v3

MaskRCNN [5] R-101 - 20.2 33.2 24.5 - - - - - - -
SimpleBaseline R-101 - 24.1 37.4 26.8 - - - - - - -
AlphaPose+ [13] R-101 - 27.5 40.8 29.9 - - - - - - -
OPEC-Net [13] R-101 - 29.1 41.3 31.4 - - - - - - -
MIPNet R-101 384⇥ 288 35.0 44.1 36.1 - 35.1 74.5 88.6 79.1 - 72.8

Top-Down, FasterRCNN

HRNet H-48 384⇥ 288 37.2 46.7 40.0 - 39.8 78.0 93.5 83.7 - 78.0
MIPNet H-48 384⇥ 288 42.5 (+5.3) 51.8 46.3 - 44.1 83.0 97.1 89.2 - 83.0

Table 8: Additional metrics for comparison between MIPNet and various architectures on OCHuman val and test set using
Faster-RCNN and YOLO-v3 bounding boxes for evaluation.

Min. BB OCHuman
Confid. val test

0.0 30637 26992
0.1 22247 19704
0.2 16273 14613
0.3 13603 12216
0.4 11944 10767
0.5 10654 9645
0.6 9626 8697
0.7 8699 7880
0.8 7768 7018
0.9 6644 5989

0.99 4416 3883

Table 9: Number of Faster-RCNN bounding boxes greater than a given confidence score.

Inference COCO CrowdPose OCHuman
HRNet 78.1 72.8 65.0
MIPNet (SIP, � = 1) 55.8 42.2 41.4
MIPNet (SIP, � = 0) 78.3 72.7 65.7
MIPNet (MIP) 78.8 73.7 74.1

Table 10: Performance of each individual instances of MIPNet on val sets using ground truth bounding boxes. We use the
backbone W48 with image resolution 384⇥ 288, and compare with the same HRNet configuration. By default, HRNet only
predicts a single instance.

pass as additional input to MIMB. In Tab. 11, we show the effect of only using the embed block by disabling Fsq and Fex, in
the first row for both COCO and OCHuman val datasets. Note that these numbers are lower than corresponding experiments
that use Fsq and Fex operations, by 0.3 AP for COCO (Tab. 2, last row in paper) and 3.3 AP (Tab. 4, last row in paper) for
OCHuman val datasets. This confirms that all three operations contribute to MIMB, and therefore to MIPNet. We further
study the effect of varying the intermediate linear layer within Fsq and Fex, which is controlled by the reduce parameter [6]
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Figure 5: Unlike HRNet, MIPNet maintains a stable performance as a function of detector confidence for selecting input
bounding boxes. Results are shown using HRNet-W48-384⇥ 288 evaluated on the val set of OCHuman.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

45

37.2 36.8
36.2

35.7 35.2 34.8 34.3
33.7

32.9
31.7

27.1

42.5 42.3 42.2 42.1 42 41.9 41.8 41.7 41.5 41.4 41

A
P

Minimum Bounding Box Confidence

 HRNet
 MHPNet

Figure 6: Similar to Figure 5 we show results on the test set of OCHuman.

in Listing 1. While all the results reported in the paper use the default value of reduce=4, we show that reduce=2 and
reduce=1 show comparable results.

7. OCPose Dataset
For completeness, we also benchmark MIPNet on another occlusion specific OCPose dataset [13]. OCPose is a larger

dataset than OCHuman with pose annotations of occluded humans. It contains 9K images and 18000 persons labeled with
12 keypoints. The number of examples with occlusion IoU > 0.5 is 78% for OCPose [13]. Each image in the dataset, is
annotated with exactly two person keypoints. Further, both the persons have the same bounding box, this is in contrast to tight
fitting bounding box annotations in the datasets like COCO, Crowdpose and OCHuman. This results in inflated occlusion
levels for the OCPose dataset in comparison to the OCHuman dataset reported in [13] (refer its Table 1).

Table. 12 reports the MIPNet’s results on the OCPose dataset [13] with custom train:test splits as the OPEC-Net [13]
splits are not released. All the models are trained on the COCO dataset and evaluated on the test set of OCPose. We evaluate



Method Arch Ablation AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

COCO
MIPNet H-48 only embed 78.5 94.4 85.5 75.3 83.5 81.4 95.8 87.5 77.8 86.7
MIPNet H-48 reduce=1 78.8 94.4 85.8 75.5 83.6 81.5 95.4 87.8 78.0 86.6
MIPNet H-48 reduce=2 78.8 94.4 85.6 75.8 83.6 81.7 95.7 87.7 78.3 86.8
MIPNet H-48 reduce=4 78.8 94.4 85.7 75.5 83.7 81.6 95.5 87.5 78.0 86.8

OCHuman
MIPNet H-48 only embed 70.8 89.8 77.5 65.7 70.9 77.9 94.2 84.2 68.6 77.9
MIPNet H-48 reduce=1 74.4 90.7 80.9 66.9 74.4 81.2 95.1 87.2 70.0 81.2
MIPNet H-48 reduce=2 74.0 90.1 80.3 63.6 74.0 80.7 94.5 86.7 68.6 80.7
MIPNet H-48 reduce=4 74.1 89.7 80.1 68.4 74.1 81.0 94.4 87.0 72.9 81.0

Table 11: We illustrate different ablations of MIMB. For MIPNet with backbone W48 on resolution 384⇥288, we train models
with varying capacity for squeeze Fsq and excite Fex operations. When both operations are disabled, and only embed operation
Fembed is used within MIMB, we get sub-optimal results on both COCO val (0.3 AP drop) and OCHuman val (3.6 AP
drop) datasets (first row of each dataset). When squeeze and excite operations are employed, we get a good performance boost,
especially on the OCHuman val dataset. All results in the paper employ reduce=4 (bold).

Method AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

ground truth bounding box

HRNet 34.2 48.2 36.7 36.6 34.1 36.8 48.9 39.5 38.3 36.8
MIPNet (� = 0) 34.6 49.2 36.7 37.0 34.6 37.3 49.2 39.9 36.7 37.3
MIPNet (� = 1) 23.8 34.9 25.2 30.6 24.0 28.6 39.7 30.0 45.0 28.6
MIPNet 49.7 (+15.5) 72.3 53.0 59.4 49.7 56.4 74.8 60.1 70.0 56.4

ground truth bounding box - tight fitting

HRNet 47.7 74.6 50.1 35.8 47.7 53.0 77.0 56.4 41.3 53.1
MIPNet (� = 0) 46.6 73.2 49.1 33.7 46.9 52.5 76.2 55.8 37.0 52.6
MIPNet (� = 1) 26.5 51.2 23.9 10.7 26.9 36.4 61.4 35.7 32.3 36.4
MIPNet 49.3 (+1.6) 77.3 51.9 33.6 49.5 56.9 82.8 60.7 37.3 57.1

Table 12: Results on the OCPose val set. All the evaluations use the HRNet-W48 backbone at 348⇥ 288 image resolution.
We provide both evaluations, using the relaxed gt bounding boxes provided by the OCPose and the tight fitting gt bounding
box. The tight fitting bounding box is using the keypoint annotations.

only on the common keypoints between the both datasets.

8. Qualitative Results
Figure 7 and Figure 8 shows additional results on the OCHuman dataset, comparing MIPNet to HRNet. Note that in all

of these cases, HRNet faces the problem of having highly overlapping bounding boxes because of the spatial proximity of
humans in these images. Consequently, HRNet picks one dominant person and detects key-points on the same person within
both bounding box instances. In contrast, MIPNet can clearly identify the correct set of key-points and associate them to the
correct human(s) in each example. We especially want to point attention to the cases where people are dancing in tandem, or
tackling each other while playing sports. Such situations produce extremely complicated occlusions. However, MIPNet is able
to successfully attribute the correct key-points to each human in the input bounding boxes in such situations, highlighting its
usefulness in occlusion scenarios.



Figure 7: Qualitative results of MIPNet. Each image (left to right) shows input bounding boxes, HRNet predictions and
MIPNet predictions.



Figure 8: Qualitative results of MIPNet. Each image (left to right) shows input bounding boxes, HRNet predictions and
MIPNet predictions.
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