Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation

1. Multi-Instance Modulation Block (MIMB) Code

In this section, we describe the code of MIMB in PyTorch. The code in Listing. 1 outlines the details of functions
Fyy, Fep and Fopp,. F is a simple global average pool and F,, and F.,, are two-layered neural networks. MIMB can be
incorporated in any existing feature extraction backbone, with a relatively simple (< 15 lines) code change.

I class MIMB (nn.Module) :

def __init_ (self, num_channels=c, reduce=r):
super (MIMB, self)._ _init__ ()
4 self.F_sgn = nn.AdaptiveAvgPool2d (1)

6 self.F_ex = nn.Sequential (
nn.Linear(c, ¢ // r, bias=False),

8 nn.RelLU (inplace=True),

9 nn.Linear(c // r, c, bias=False),

10 nn.Sigmoid ()

11 )

13 self.F_em = nn.Sequential (
14 nn.Linear (2, ¢ // r),

15 nn.BatchNormld(c // r),
16 nn.RelLU (inplace=True),
17 nn.Linear(c // r, c),

18 nn.Sigmoid ()

20 return

def forward(self, x, lambda) :

23 b, ¢, _, _ = x.size()

24 y = self.F_sagn(x) .view(b, c)

25 y = self.F_ex(y).view(b, ¢, 1, 1)

z = self.F_em(lambda) .view(b, c, 1, 1)

29 out = x x y.expand_as (x) * z.expand_as (x)
30 return out

Listing 1: Code for MIMB.

2. Implementation Details

We merge all the instances from A = 0 to N — 1 and then apply oks-nms. During the merger, we discount the confidence
of the instance A\ = i by v*. As the primary instance (A = 0) is always centralized in the input, this confidence discounting
avoids suppression of a high resolution primary predictions by a low resolution A > 0 prediction. We use v = 0.9 in all our
experiments.
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Figure 1: Ilustration of HRNet-W32 backbone at input resolution 256 x 192. The blue blocks depict the four stages in the
architecture.
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Figure 2: Illustration of MIPNet with HRNet-W32 backbone at input resolution 256 x 192. We insert 5 MIMBs into the
HRNet, 4 MIMBs after Stage 3 and 1 MIMB after Stage 4.

MIPNet-HRNet: Figure. 1 shows the architecture details of HRNet [15]. For simplicity, we only show backbone HRNet-
W32 at input size 256 x 192, other HRNet backbones follow similar pipeline. Figure. 2 shows the architecture of MIPNet,
where multiple MIMBs are inserted at various stages.
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Figure 3: Illustration of SimpleBaseline architecture. The blue blocks represent the four blocks in the encoder of SimpleBase-
line.
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Figure 4: Illustration of MIPNet with SimpleBaseline architecture. We insert 2 MIMBs into the encoder after Block 3 and
Block 4.

MIPNet-SimpleBaseline: Figure. 3 shows the architecture details of SimpleBaseline [16]. Figure. 4 shows the architecture
of MIPNet, where multiple MIMBs are inserted in the encoder of the pose estimator.

3. Diminishing Returns with N = 3,4

We observed a small improvement in AP using N = 3 and N = 4 on top of N = 2 respectively on the datasets when
evaluated using ground-truth bounding boxes. This is consistent with the fact that most datasets have very few examples with
three or more ground-truth pose instances per bounding box (Refer data statistics in the paper). Note, on the more occluded
OCHuman dataset, increasing N gives better performance.

Inference COCO | CrowdPose | OCHuman
HRNet 78.1 72.8 65.0
MIPNet, N = 2 78.8 73.7 74.1
MIPNet, N =3 78.4 73.9 74.3
MIPNet, N = 4 78.6 73.7 74.7

Table 1: Performance of MIPNet on val sets using ground truth bounding boxes with increasing N. We use the backbone
W48 with image resolution 384 x 288, and compare with the same HRNet configuration. By default, HRNet only predicts a
single instance.



4. Additional Results on COCO, CrowdPose and OCHuman
4.1. Additional results on COCO

Table 2 shows additional metrics for comparison between MIPNet (/N = 2) and various baseline architectures on COCO
val dataset using ground truth bounding boxes for evaluation. We also report GFLOPs for each model. Note that for all
baseline evaluations for HRNet and SimpleBaseline, we follow the same protocol as outlined in the respective papers [15, 16].

Table 3 shows additional metrics for comparison between MIPNet and HRNet on COCO val and test datasets using
Faster-RCNN bounding boxes, provided by authors of [15] for evaluation. For HRNet, numbers are reported from their
paper [15] (some metrics are not provided).

4.2. Additional results on CrowdPose

Table 5 compares MIPNet to HRNet for various widths and image resolutions on CrowdPose val dataset using ground truth
bounding boxes. Similarly, Table. 6 compares MIPNet to HRNet on CrowdPose val and test datasets using Faster-RCNN
bounding boxes [14]. Note that, commensurate with increasing percentage of occlusions in the dataset, MIPNet consistently
does better than HRNet in most metrics on both datasets.

4.3. Additional results on OCHuman

Table 7 shows our detailed evaluations on the OCHuman val dataset using ground truth bounding boxes. As can be seen,
MIPNet outpeforms HRNet and SimpleBaseline on all metrics, with a maximum improvement of 10.5 AP over SimpleBaseline
(R — 50,384 x 288) and 9.1 AP over HRNet (H — 48, 384 x 288).

Similarly, Table. 8 shows detailed results on the OCHuman val and test datasets using Faster-RCNN bounding boxes.
MIPNet achieves a state-of-the-art 42.5AP across both top-down and bottom-up pose estimation networks, to the best of our
knowledge. We show a 4.2 AP improvement over HRNet on val dataset and a 5.3 AP improvement over HRNet on test
dataset in this case.

4.4. Robustness to Bounding Box Confidence

Table 9 illustrates the number of Faster-RCNN bounding boxes as a function of minimum bounding box confidence. Notice
that a majority of all available bounding boxes (min. confidence = 0.0) have confidence < 0.4.

Method | Arch [ InputSize | GFLOPS | AP AP AP APM AP AR AR® AR ARM AR
SBL R-50 | 256 x 192 8.90 72.4 915 804 697 765 756 930 823 723 804
MIPNet | R-50 | 256 x 192 16.3 733(+09) | 933 812 70.6 776 767 942 834 734 816
SBL R-101 | 256 x 192 12.4 73.4 926 814 707 777 765 934 831 733 812
MIPNet | R-101 | 256 x 192 23.1 741 (+0.7) | 933 823 713 786 774 944 844 741 823
SBL R-152 | 256 x 192 15.7 743 926 825 71.6 787 714 938 842 44 820
MIPNet | R-152 | 256 x 192 29.1 74.8 (+0.5) | 93.3 824 717 794 782 946 849 747 832
SBL R-50 | 384 x 288 20.2 74.1 926 805 705 796 769 932 827 730 82.6
MIPNet | R-50 | 384 x 288 36.7 753(+1.2) | 934 824 720 804 784 946 847 746 838
SBL R-101 | 384 x 288 27.8 75.5 925 826 724 808 784 936 845 749 838
MIPNet | R-101 | 384 x 288 51.9 76.0 (+0.5) | 934 835 726 811 791 948 856 755 845
SBL R-152 | 384 x 288 35.5 76.6 926 83.6 737 813 793 940 853 759 845
MIPNet | R-152 | 384 x 288 65.4 770 (+0.4) | 935 843 737 819 800 949 861 764 853
HRNet | H-32 [ 256 x 192 7.10 76.5 935 837 739 808 793 945 858 762 841
MIPNet | H-32 | 256 x 192 9.80 77.6(+1.1) | 944 853 747 819 806 956 871 773 854
HRNet | H-48 | 256 x 192 14.6 77.1 936 847 741 819 799 945 863 765 85.1
MIPNet | H-48 | 256 x 192 20.7 77.6 (+0.5) | 944 854 746 821 806 956 870 773 855
HRNet | H-32 | 384 x 288 16.0 71.7 936 847 748 825 804 944 864 7110 856
MIPNet | H-32 | 384 x 288 22.1 78.5(+0.8) | 944 857 756 830 814 956 874 780 863
HRNet | H-48 | 384 x 288 329 78.1 936 849 753 831 809 947 867 775 86.0
MIPNet | H-48 | 384 x 288 46.5 78.8(+0.7) | 944 857 755 837 816 955 875 780 86.8

Table 2: Additional metrics for comparison between MIPNet and various architectures on COCO val set using ground-truth
bounding boxes for evaluation.



Method Arch | InputSize | AP | AP AP APY AP AR AR™ AR ARV AR'
val
HRNet H-48 [ 384 x 288 [ 763 908 829 723 834 812 - - - -
MIPNet H-48 | 384 x 288 | 76.3(+0.0) | 906  83.0 721 833 814 942 876 76. 882
test
Bottom-Up
OpenPose [1] - - 61.8 849 675 571 682 665 - - - -
AE [10] - - 65.5 868 723 606 726 702 @ - - - -
PersonlLab [11] - - 68.7 89.0 754 64.1 755 754 - - - -
MultiPoseNet [9] - - 69.6 863 766 650 763 735 - - - -
Top-Down
MaskRCNN [3] R-50 - 63.1 873 687 578 714 - - - - -
G-RMI [12] R-101 | 353 x 257 | 64.9 855 713 623 700 697 - - - -
CPN [2] R-Incep | 384 x 288 | 72.1 914  80.0 687 772 785 - - - -
RMPE [4] PyraNet | 320 x 256 | 72.3 892 791 680 786 - - - - -
HRNet H-48 | 384 x 288 | 75.5 925 833 719 8L5 805 - - - -
MIPNet H-48 | 384 x 288 | 75.7(+0.2) | 924 833 714 812 805 955 874 761 865

Table 3: Additional metrics for comparison between MIPNet and various architectures on COCO val and test set using
Faster-RCNN bounding boxes for evaluation.

Method | Arch | AP AP AP™

HRNet | H-32 | 76.5 93.5 83.7

MIPNet | H-32 | 77.44 +0.185 | 94.42 + 0.039 | 85.32 4+ 0.025
HRNet | H-48 | 77.1 93.6 84.7

MIPNet | H-48 | 77.84 +0.162 | 94.44 +0.079 | 85.4 + 0.012

Table 4: We report mean =+ std-dev of MIPNet over five runs on the COCO val set with ground-truth bounding boxes using
256 x 192 input resolution. H-@ stands for HRNet-W @ backbone.

Method | Arch | Input Size | AP APP" AP AR AR®® ART? AP AP™T  ApMd
HRNet | H-32 | 256 x 192 | 70.0 91.0 763 739 926 794 788 703 617
MIPNet | H-32 | 256 x 192 | 71.2(+1.2) | 919 774 761 944 817 788 715 638
HRNet | H-48 | 256 x 192 | 71.3 91.1 775 748 924 8.5 805 714 625
MIPNet | H-48 | 256 x 192 | 72.8 (+1.5) | 920 792 774 948 830 806 731 652
HRNet | H-32 | 384 x 288 | 71.6 91.1 777 750 926 804 804 721  62.6
MIPNet | H-32 | 384 x 288 | 73.0(+1.4) | 91.8 793 779 948 834 807 733 655
HRNet | H-48 | 384 x 288 | 72.8 921 787 763 933 814 813 733 640
MIPNet | H-48 | 384 x 288 | 73.7(+0.9) | 91.9 800 784 948 840 807 741 665

Table 5: Additional metrics for comparison between MIPNet and various architectures on CrowdPose val set using ground-
truth bounding boxes for evaluation.

We compare the performance of MIPNet to HRNet as a function of varying minimum confidence on OCHuman test
dataset in Fig. 6 and val dataset in Fig. 5 (also shown in the paper). MIPNet is much more stable w.r.t bounding box
confidence thresholding, as compared to baseline networks like HRNet. We note that while MIPNet AP drops from 42.5
to 41.4 (1.1 AP drop) on test set at minimum confidence of 0.9, HRNet drops by more than 6 AP. This performance is
consistent with the performance on the val dataset (Fig. 4 in the paper).

5. Individual Instance Performance

It is interesting to compare the performance of each individual instances predicted by MIPNet in isolation. Since A = 0
correspond to the primary instance (centered on the person), only using the primary instance for inference is expected to
give better results compared to only using A = 1 instance during inference. In addition, we also expect A = 0 instance to
provide similar performance as baseline top-down network, if used in isolation. Table 10 shows the performance of each



Method Arch | TnputSize | AP | AP AP AR AR AR” AP AP™ AP
val
HRNet H-48 384 x 288 | 68.0 85.5 734 766  93.8 81.9 77.4 68.8 57.8
MIPNet H-48 384 x 288 | 68.8 (+0.8) | 85.9 745 781 945 83.6 77.1 69.4 59.8
test
Bottom-Up
OpenPose [ 1] - - - - - - - - 62.7 48.7 32.3
HigherHRNet [3] HH-48 | 640 x 640 | 67.6 87.4 72.6 - - - 75.8 68.1 58.9
HghHRNet + UDP [7] | HH-48 | 640 x 640 | 68.2 88.0 72.9 - - - 76.6 68.7 59.9
Top-Down, YOLO-v3
MaskRCNN [5] R-101 - 57.2 83.5 60.3 - - - - - -
SimpleBaseline [16] R-101 - 60.8 81.4 65.7 - - - - - -
AlphaPose+ [13] R-101 - 27.5 40.8 29.9 - - - - - -
OPEC-Net [13] R-101 - 70.6 86.8 75.6 - - - - - -
MIPNet R-101 384 x 288 | 68.1 85.2 73.8 751 92.3 79.2 74.6 69.2 53.4
Top-Down, Faster-RCNN
HRNet H-48 384 x 288 | 69.3 86.9 747 773 942 82.5 77.7 70.6 57.8
MIPNet H-48 384 x 288 | 70.0 (+0.7) | 86.8 75,7 788 949 84.3 78.1 71.1 594

Table 6: Additional metrics for comparison between MIPNet and various architectures on CrowdPose val and test
using Faster-RCNN and YOLO-v3 bounding boxes for evaluation.

set

Method Arch [ InputSize | AP AP AP APY  APY AR AR AR ARM ART
SimpleBaseline | R-50 | 256 x 192 | 56.3 76.1 612 664 563 610 780 659 700 61.0
MIPNet R-50 | 256 x 192 | 64.4(+8.1) | 86.0 704 668 646 723 915 785 714 723
SimpleBaseline | R-101 | 256 x 192 | 60.5 772 666 683 605 647 79.6 701 729 64.7
MIPNet R-101 | 256 x 192 | 68.2(+7.7) | 874 751 67.0 682 755 929 8.1 743 755
SimpleBaseline | R-152 | 256 x 192 | 62.4 783  68.1 683 624 665 802 718 743 665
MIPNet R-152 | 256 x 192 | 70.3(+7.9) | 886 779 669 702 77.0 930 841 729 770
SimpleBaseline | R-50 | 384 x 288 | 55.8 748 604 647 559 607 780 652 714 60.7
MIPNet R-50 | 384 x 288 | 66.3(+10.5) | 87.5 722 660 663 741 927 803 714 741
SimpleBaseline | R-101 | 384 x 288 | 61.6 772 666 621 616 658 794 705 729 65.8
MIPNet R-101 | 384 x288 | 70.3(+8.7) | 884 771 641 704 717 934 840 729 717
SimpleBaseline | R-152 | 384 x 288 | 64.2 783  69.1 665 642 681 804 730 743 68.1
MIPNet R-152 | 384 x288 | 72.4(+8.2) | 895 795 677 725 796 941 862 714 79.6
HRNet H-32 | 256 x 192 | 63.1 794 690 642 631 673 819 724 686 673
MIPNet H-32 | 256 x 192 | 72.5(+9.4) | 89.2 794 651 726 791 936 852 714 791
HRNet H-48 | 256 x 192 | 64.5 794  70.1 651 645 685 81.6 737 686 685
MIPNet H-48 | 256 x 192 | 72.2(+7.7) | 89.5 787 665 723 792 942 854 700 792
HRNet H-32 | 384 x 288 | 63.7 784 690 643 637 616 808 726 700 67.6
MIPNet H-32 | 384 %288 | 72.7(+9.0) | 89.6 79.6 665 727 797 943 861 700 79.7
HRNet H-48 | 384 x 288 | 65.0 784 703 684 650 688 806 734 714 688
MIPNet H-48 | 384 %288 | 741(+9.1) | 89.7 801 684 741 81.0 944 870 729 81.0

Table 7: Additional metrics for comparison between MIPNet and various architectures on OCHuman val set using ground-
truth bounding boxes for evaluation.

individual instance mode of MIPNet with HRNet-W48 backbone at input size 384 x 288 on various datasets, using ground
truth bounding boxes. Note that when using only a single hypothesis from MIPNet for inference, performance of primary
instance (A = 0) is similar to HRNet. When using multiple instances during inference, we get an improvement of 8.4 AP
(65.7 to 74.1 AP) on the OCHuman dataset.

6. Ablation: MIMB

In this section, we study the effect of ablation for MIMB. As outlined in the paper, MIMB consists of three operations
squeeze F 4, excite F o, and embed F.,,,. Of the three operations, the embed operation F,,, consumes the A parameter that we



Method Arch Input Size | AP | AP AP APY AP AR AR™ AR ARY AR'
val
HRNet H-48 384 x 288 | 37.8 50.6 40.5 38 404 699 89.0 73.9 67.1  69.9
MIPNet H-48 384 x 288 | 42.0 (+4.2) | 51.2 45.6 32 435 825 96.7 88.5 714 825
test
Bottom-Up
AE [10] Hourglass - 29.5 - - - - - - - - -
AE-multiscale [10] Hourglass - 32.8 - - - - - - - - -
HGG [8] Hourglass - 34.8 - - - - - - - - -
HGG-multiscale [8] | Hourglass - 36.0 - - - - - - - - -
Top-Down, YOLO-v3
MaskRCNN [5] R-101 - 20.2 33.2 24.5 - - - - - - -
SimpleBaseline R-101 - 241 374 26.8 - - - - - - -
AlphaPose+ [13] R-101 - 27.5 40.8 29.9 - - - - - - -
OPEC-Net [13] R-101 - 29.1 41.3 314 - - - - - - -
MIPNet R-101 384 x 288 | 35.0 441 36.1 - 351 745 88.6 79.1 - 72.8
Top-Down, FasterRCNN
HRNet H-48 384 x 288 | 37.2 46.7 40.0 - 39.8 78.0 935 83.7 - 78.0
MIPNet H-48 384 x 288 | 42.5(+5.3) | 51.8 46.3 - 44.1 83.0 971 89.2 - 83.0

Table 8: Additional metrics for comparison between MIPNet and various architectures on OCHuman val and test set using
Faster-RCNN and YOLO-v3 bounding boxes for evaluation.

Min. BB OCHuman

Confid. val | test
0.0 30637 | 26992
0.1 22247 | 19704
0.2 16273 | 14613
0.3 13603 | 12216
04 11944 | 10767
0.5 10654 9645
0.6 9626 8697
0.7 8699 7880
0.8 7768 7018
0.9 6644 5989
0.99 4416 3883

Table 9: Number of Faster-RCNN bounding boxes greater than a given confidence score.

Inference COCO | CrowdPose | OCHuman
HRNet 78.1 72.8 65.0
MIPNet (SIP, A = 1) 55.8 422 41.4
MIPNet (SIP, A = 0) 78.3 72.7 65.7
MIPNet (MIP) 78.8 73.7 74.1

Table 10: Performance of each individual instances of MIPNet on val sets using ground truth bounding boxes. We use the
backbone W48 with image resolution 384 x 288, and compare with the same HRNet configuration. By default, HRNet only
predicts a single instance.

pass as additional input to MIMB. In Tab. 11, we show the effect of only using the embed block by disabling s, and F,, in
the first row for both COCO and OCHuman val datasets. Note that these numbers are lower than corresponding experiments
that use F5, and F,, operations, by 0.3 AP for COCO (Tab. 2, last row in paper) and 3.3 AP (Tab. 4, last row in paper) for
OCHuman val datasets. This confirms that all three operations contribute to MIMB, and therefore to MIPNet. We further
study the effect of varying the intermediate linear layer within F;, and F ., which is controlled by the reduce parameter [6]
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Figure 5: Unlike HRNet, MIPNet maintains a stable performance as a function of detector confidence for selecting input
bounding boxes. Results are shown using HRNet-W48-384 x 288 evaluated on the val set of OCHuman.
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Figure 6: Similar to Figure 5 we show results on the test set of OCHuman.

in Listing 1. While all the results reported in the paper use the default value of reduce=4, we show that reduce=2 and
reduce=1 show comparable results.

7. OCPose Dataset

For completeness, we also benchmark MIPNet on another occlusion specific OCPose dataset [13]. OCPose is a larger
dataset than OCHuman with pose annotations of occluded humans. It contains 9K images and 18000 persons labeled with
12 keypoints. The number of examples with occlusion IoU > 0.5 is 78% for OCPose [13]. Each image in the dataset, is
annotated with exactly rwo person keypoints. Further, both the persons have the same bounding box, this is in contrast to tight
fitting bounding box annotations in the datasets like COCO, Crowdpose and OCHuman. This results in inflated occlusion
levels for the OCPose dataset in comparison to the OCHuman dataset reported in [13] (refer its Table 1).

Table. 12 reports the MIPNet’s results on the OCPose dataset [13] with custom train:test splits as the OPEC-Net [ 3]
splits are not released. All the models are trained on the COCO dataset and evaluated on the test set of OCPose. We evaluate



Method | Arch | Ablation AP AP AP APM AP AR AR AR ARM AR
COCO

MIPNet | H-48 | onlyembed | 78.5 944 855 753 835 814 958 875 778 86.7
MIPNet | H-48 | reduce=1 788 944 858 755 836 815 954 878 780 86.6
MIPNet | H-48 | reduce=2 788 944 856 758 83.6 81.7 957 877 783 86.8
MIPNet | H-48 | reduce=4 788 944 857 755 837 816 955 875 78.0 86.8
OCHuman

MIPNet | H-48 | only embed | 70.8 89.8 775 657 709 779 942 842 686 779
MIPNet | H-48 | reduce=1 744 907 809 669 744 812 951 872 700 812
MIPNet | H-48 | reduce=2 740 90.1 80.3 63.6 740 80.7 945 867 68.6 80.7
MIPNet | H-48 | reduce=4 741 89.7 80.1 684 741 810 944 87.0 729 81.0

Table 11: We illustrate different ablations of MIMB. For MIPNet with backbone W48 on resolution 384 x 288, we train models
with varying capacity for squeeze F ;, and excite F ., operations. When both operations are disabled, and only embed operation
Fembeq 1s used within MIMB, we get sub-optimal results on both COCO val (0.3 AP drop) and OCHuman val (3.6 AP
drop) datasets (first row of each dataset). When squeeze and excite operations are employed, we get a good performance boost,
especially on the OCHuman val dataset. All results in the paper employ reduce=4 (bold).

Method | AP | AP AP AP AP AR AR™ AR ARY AR'
ground truth bounding box
HRNet 34.2 48.2 36.7 36.6 341 368 489 39.5 383 368
MIPNet (A =0) | 34.6 49.2 36.7 370 346 373 492 399 36.7 373
MIPNet (A =1) | 23.8 349 252 30,6 240 286 39.7 300 450 28.6
MIPNet 49.7 (+15.5) | 72.3 53.0 594 497 564 748 60.1 70.0 56.4
ground truth bounding box - tight fitting
HRNet 47.7 74.6 50.1 358 47.7 53.0 77.0 564 413 531
MIPNet (A = 0) | 46.6 73.2 49.1 337 469 525 762 55.8 37.0 526
MIPNet (A =1) | 26.5 51.2 239 107 269 364 614 35.7 323 364
MIPNet 49.3 (+1.6) 77.3 519 336 495 569 828 60.7 373 571

Table 12: Results on the OCPose val set. All the evaluations use the HRNet-W48 backbone at 348 x 288 image resolution.
We provide both evaluations, using the relaxed gt bounding boxes provided by the OCPose and the tight fitting gt bounding
box. The tight fitting bounding box is using the keypoint annotations.

only on the common keypoints between the both datasets.

8. Qualitative Results

Figure 7 and Figure 8 shows additional results on the OCHuman dataset, comparing MIPNet to HRNet. Note that in all
of these cases, HRNet faces the problem of having highly overlapping bounding boxes because of the spatial proximity of
humans in these images. Consequently, HRNet picks one dominant person and detects key-points on the same person within
both bounding box instances. In contrast, MIPNet can clearly identify the correct set of key-points and associate them to the
correct human(s) in each example. We especially want to point attention to the cases where people are dancing in tandem, or
tackling each other while playing sports. Such situations produce extremely complicated occlusions. However, MIPNet is able
to successfully attribute the correct key-points to each human in the input bounding boxes in such situations, highlighting its
usefulness in occlusion scenarios.
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Figure 7: Qualitative results of MIPNet. Each image (left to right) shows input bounding boxes, HRNet predictions and
MIPNet predictions.



Figure 8: Qualitative results of MIPNet. Each image (left to right) shows input bounding boxes, HRNet predictions and
MIPNet predictions.
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