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In this supplement, we provide further analysis of our
method and implementation details of our experiments. Sec-
tion 1 presents additional ablation studies of our method.
Section 2 extends our detection evaluation to tracking to
use the popular IDF1 and MOTA (multi-object tracking ac-
curacy) metrics. Section 3 provides details regarding our
human vision experiment, which analyzes people’s ability
to detect and localize highly occluded objects. Section 4
discusses the experimental setup for PANDA and MOT-20
datasets, and Section 5 reports the runtime and presents pseu-
docode of our final depth-aware tracking algorithm. Please
refer to the supplementary video for a qualitative analysis of
our approach.

1. Ablation Study
In this section, we analyze the impact of using differ-

ent depth estimators (Section 1.1), segmentation masks in
place of bounding boxes for estimating average depth (Sec-
tion 1.2), more sophisticated forecasters (Section 1.3), the
performance of our method on moving vs. stationary cam-
eras (Section 1.4), and, finally, the importance of different
hyperparameters (Section 1.5).

1.1. Monocular Depth Estimators

Our method relies on an off-the-shelf monocular depth
estimator to enable occlusion reasoning in 3D. In our main
paper, we used the MegaDepth [12] estimator throughout
our experiments. Here, we evaluate whether recent advances
in monocular depth estimation provide more reliable relative
depth estimates of people as used by our method. Specif-
ically, we replace the MegaDepth estimator with the Man-
nequinChallenge [11] and MIDAS [9] depth estimators in
our method. We evaluate on MOT-17 using the Faster-RCNN
set of public detections, and set all hyperparameters in our
pipeline to their default values and disable the depth-aware
noise scaling. This simple variant of our pipeline allows
us to evaluate the quality of depth estimates from each of
the three methods. Table 1 shows that the per frame depth
estimator from Mannequin Challenge [11] does worse than
MegaDepth [12] by 1.2 Top-5 F1 for invisible people and

Top-5 F1 Top-1 F1 IDF1

Depth est. Occl All Occl All Occl All

MegaDepth [12] 35.4±0.2 69.8±0.0 26.7 68.4 9.5 53.3
Mannequin [11] 34.2±0.2 69.4±0.0 25.5 68.0 8.5 53.3
MIDAS [9] 34.4±0.1 69.5±0.0 26.5 68.2 9.1 53.8

Table 1. Comparison of monocular depth estimators used in our
pipeline. More recent depth estimators do not seem to provide more
reliable relative depth orderings, which are used by our method.

MIDAS [9] similarly does worse by 1.0 point. By the stan-
dard Top-1 F1 metric, these estimators degrade accuracy by
1.2 and 0.2 points respectively. As this simple variant of our
pipeline is aimed at evaluating the relative depth orderings
output from the depth estimators, these results suggest that
while these depth estimators have become more accurate and
generalizable over the years, the relative depth orderings of
objects has not significantly improved.

Since monocular depth estimators can take as input im-
ages of varying sizes, we evaluate the effect of using higher
resolution images as input to the estimator. Using a higher
resolution input can increase the size of smaller objects in
the scene (e.g., people far away), potentially allowing depth
estimators to output more precise depth estimates. We eval-
uate using higher resolutions as input with the MIDAS [9]
estimator in Table 2. By default, we resize images to a res-
olution of 512×384 pixels (‘1x’, the resolution MIDAS is
trained with) from their original resolution of 1920×1080.
We evaluate MIDAS [9] at 2× and 3× this default resolution
and find in that doing so improves the Top-5 F1 for invisible
peopleby 3.1%. We note here that this is not the case with
the other two depth estimators [12, 11] whose performance
decreases or stagnates with higher resolutions (not shown).

1.2. Boxes vs Masks

Our method estimates a person’s depth by taking the aver-
age of the depth estimates within the person’s bounding box.
However, these pixels may contain background regions, lead-
ing to incorrect depth estimates. To address this, we evaluate



Top-5 F1 Top-1 F1 IDF1

Depth Res. Occl All Occl All Occl All

MIDAS 1x 34.4±0.1 69.5±0.0 26.5 68.2 9.1 53.8
MIDAS 2x 35.5±0.2 70.0±0.0 27.0 68.5 9.8 53.9
MIDAS 3x 37.5±0.2 69.9±0.0 27.0 68.2 10.8 53.9

Table 2. We evaluate a recent depth estimator, MIDAS [9], at
varying input resolutions. At higher resolutions (3x), the estimator
improves Top-5 F1 by 3.1 points, suggesting higher resolutions can
improve depth estimates, likely by providing more reliable relative
depths for faraway pedestrians.

Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

Boxes 39.8 ±0.2 70.5 ±0.1 26.7 68.5 10.5 54.8
Masks 40.6±0.3 71.3±0.0 27.3 69.1 11.0 54.7

Table 3. Replacing boxes by masks for getting mean depth of a
person only helps by a small amount suggesting that boxes can
reasonably replace masks.

a variant which uses an off-the-shelf instance segmentation
method to only compute the average depth within a predicted
person mask. To do this, we pass the Faster R-CNN public
detections from MOT-17 as proposals into the mask head of
Mask R-CNN [5]. Occasionally, this instance segmentation
method may fail to produce a reasonable mask for a person.
We design a simple strategy for detecting a common failure
case: if the output segmentation mask covers less than 25%
of the bounding box (in cases where the people are too small
or out-of-distribution), we discard the predicted mask and
treat the full bounding box as the mask. We do not use masks
for the forecasted boxes of occluded people, as these boxes
cover unknown occluders. In Table 3, we find that masks
modestly help our method, increasing Top-5 and Top-1 F1
by 0.6 and 0.8 points for occluded people. Interestingly, we
also see an increase in overall F1 by the same amount.

1.3. Forecasting Approaches

As described in the main paper, we use a constant veloc-
ity forecaster in our probabilistic approach. In Sec 4.3, we
showed that replacing our our simple linear forecaster with
more sophisticated state-of-the-art forecasters that exploit
social cues did not improve performance. Here, we provide
implementation details for these experiments, and analyze
different variants. The approaches discussed in the main
paper, SGAN [4] and STGAT [7] are supplied the top-down
views from our algorithm. Both SGAN and STGAT fore-
cast 20 samples and then choose the closest trajectory to the
groundtruth from these 20. This advantage is not feasible for

Top-5 F1 Top-1 F1 IDF1

Occl All Occl All Occl All

Si
ng

le

SGAN-8 35.4±0.2 70.2±0.0 24.6 67.8 8.9 54.3
SGAN-12 35.0±0.1 70.1±0.0 24.2 67.7 8.7 54.2
STGAT-8 35.1±0.1 70.1±0.0 24.5 67.6 8.6 54.3
STGAT-12 35.6±0.2 70.3±0.0 24.7 67.9 9.1 54.4

M
ul

ti

SGAN-8 36.0±0.2 70.3±0.0 24.8 67.9 9.2 54.4
SGAN-12 36.0±0.3 70.3±0.0 24.9 67.9 9.3 54.4
STGAT-8 36.2±0.3 70.3±0.0 24.5 67.8 8.8 54.3
STGAT-12 36.4±0.1 70.4±0.0 24.8 67.9 9.2 54.4

Table 4. MOT-17 train forecasting ablations with state-of-the-art
social forecasting models.

an online approach where groundtruth cannot be supplied
to the algorithm. To simulate the online setting, we sample
the mean trajectory from these approaches by requesting the
trajectory corresponding to the zero noise vector. We calcu-
late an approximate average scale factor of 20.0 between the
trajectory values learnt by these models and the trajectory
values available for input from our method, which we use
to scale down our input values. Additionally, each of these
methods has an 8- and 12-timestep forecasting model. In the
main paper, we report the best of these models for both ap-
proaches and report other models in Table 4. For STGAT, the
8- and 12-timestep models used are trained on the ETH [16]
dataset and for SGAN, the 8- and 12-timestep models are
trained on the ZARA1 [10] dataset. Each of these models
is made to predict for 30-timesteps by supplying the last 8
forecasted timesteps iteratively. The occlusion phase may
not last 30 timesteps for all people. We therefore use the
information from our pipeline about the number of occluded
timesteps and replace the x and z values from the output of
our pipeline with SGAN and STGAT’s forecasted x and z
values. In Table 4, we additionally report the performance
of the methods when we provide past trajectories of multiple
people as input, allowing the method to leverage social cues.
For the Top-5 evaluation, we use the blind baseline described
in Sec. 4 of our main paper. The conclusion remains that
simple linear models suffice for short, frequent occlusions as
our approach always performs better than any of the social
forecasting settings of SGAN and STGAT.

1.4. Moving vs Stationary Camera Sequences

In the MOT-17 dataset, 3 camera sequences are stationary
and 4 are captured from a moving camera. We separately
study the effect of using different components of our pipeline
on these sets of camera sequences. Table 5 shows that com-
pensating for camera egomotion and filtering estimates lying
in freespace helps the moving camera sequences by 4.5%
and 4.0% Occluded Top-5 F1 respectively while for the sta-



Top-5 Top-1 F1 IDF1

Occl
F1

Occl
Prec

Occl
Rec

All
F1 Occl All Occl All

Moving sequences

DeepSORT 27.3 ±0.3 49.7 18.8 72.4 ±0.0 17.3 67.0 2.2 56.5
+ Forecast 21.3 ±0.1 15.4 34.6 68.4 ±0.1 13.3 63.6 5.6 50.2
+ Egomotion 25.8 ±0.0 19.4 38.7 71.3 ±0.0 17.1 66.9 8.7 53.2
+ Freespace 29.8 ±0.3 28.0 31.8 72.8 ±0.0 19.9 69.2 9.4 55.2
+ Dep. noise 34.3 ±0.1 32.8 35.9 73.3 ±0.1 20.2 69.4 9.8 55.9

Stationary sequences

DeepSORT 29.2 ±0.1 94.0 17.3 66.2 ±0.0 21.7 65.9 1.1 55.0
+ Forecast 39.1 ±0.4 62.2 28.5 70.2 ±0.0 28.7 68.6 10.1 55.4
+ Egomotion 38.0 ±0.1 60.2 27.8 69.8 ±0.0 28.5 68.5 9.6 55.3
+ Freespace 40.0 ±0.0 76.1 27.1 68.9 ±0.0 30.3 67.9 10.0 54.9
+ Dep. noise 43.6 ±0.3 78.7 30.2 68.8 ±0.0 31.4 67.9 11.2 54.1

Table 5. MOT-17 train ablations for moving vs. stationary camera
sequences.

tionary camera sequences, enforcing smoother tracks for
faraway objects and filtering freespace estimates helps by
3.6% and 2.0% F1 respectively.

1.5. Hyperparameter tuning

We describe a few parameters of our approach and how
to tune them, in addition to the ones described in the paper.
The Nage parameter in our pipeline controls the number of
frames that an occluded track is forecasted for before it is
deleted. We show in Figure 1 that the DeepSORT baseline
is largely invariant to this parameter, as it does not report
its internal forecasts. Reporting these estimates, whether
directly (corresponding to ‘DeepSORT+Forecast’) or with
our approach (corresponding to ‘Our Pipeline’), highlights
the impact of the parameter. This behaviour results in a
precision-recall ‘curvelet’ which shows that by increasing
Nage, we can trade-off the precision and recall for invisible
people detection. The difficulty of this task can be high-
lighted by the trend that increasing Nage hardly increases
recall beyond a point but instead decreases precision dra-
matically because of the introduction of many false positive
boxes in the scene. We use the number of frames as a surro-
gate for uncertainty, as we find that this correlates well with
the uncertainty estimated by the Kalman Filter, as shown in
Figure 4 in the main paper.

We use a hyperparameter fprocess to scale the process
noise covariance (refer Section 3.3 in the main paper).
We additionally scale the observation noise covariance by
fobservation to account for the removal of default scaling by
height of [18]. In our algorithm, we use fprocess = 900 and
fobservation = 600.

2. IDF1-Occluded & MOTA-Occluded
In the main paper, we report detection results using the

probabilistic and standard F1 metrics. Here, we supplement

Figure 1. Detecting occluded people is sensitive to the threshold
used to declare a detection-under-high-occlusion. We fix the num-
ber of Nage frames that a track is allowed to be in an occluded
state. By increasing Nage, we can tradeoff precision and recall in
invisible-people-detection which results in a “PR-curvelet”. The
curvelets represent the experiments in rows 1, 2 and 5 of Table 4 in
the main paper.

these results with the IDF1 and MOTA (Multi-Object Track-
ing Accuracy) tracking metrics [2]. To do this, we follow
the strategy in the main paper: We do not penalize tracks
that match to visible people, but we reward only tracks that
match to occluded people.

IDF1: To evaluate tracking, we report the standard IDF1
metric and also modify it for evaluating occluded people.
Specifically, we divide the groundtruth tracks into visible
and occluded segments, and perform matching only on the
occluded segments. Once the tracks are matched, we com-
pute IDTP as the number of matched occluded boxes, IDFP
as the number of unmatched occluded or visible predictions,
and IDFN as the number of unmatched occluded groundtruth
boxes. In Tables 6, 7, 8, 9, we show that we improve the
tracking of occluded people by a large margin (upto 14.3%)
while maintaining the overall tracking performance. The
conclusions in all cases remain the same as the detection
metrics, except for the peculiar case of PANDA where we see
an 8.1% drop in the overall IDF1 metric. We attribute this to
the small size of people in PANDA and the top-down camera
viewpoint which changes the distribution of the depth esti-
mates returned by the monocular depth estimator. By tuning
noise parameters to adapt to this new distribution, we can
recover 6.9% of this drop.



Detections Tracks Occl Strat Online? IDF1

Occl All

Groundtruth (vis.) Groundtruth Interpolate 7 77.8 96.7
Faster R-CNN Groundtruth Interpolate 7 20.5 67.4

Groundtruth (vis.) DeepSORT Interpolate 7 21.3 81.0
Faster R-CNN DeepSORT Interpolate 7 6.4 53.3

Faster R-CNN DeepSORT Forecast 3 7.6 53.3

Table 6. Supplementary oracle ablations on MOT-17 train.

MOTA: In addition to reporting standard MOTA, we
modify it for occluded tracks by counting detections matched
to occluded groundtruth as true positives (TP), unmatched de-
tections as false positives (FP), and unmatched groundtruth
as false negatives (FN), and only count ID-switches (IDS)
for tracks corresponding to occluded groundtruth. Perhaps
surprisingly, we find in Table 9 that the MOTA metric is
negative for all ablations. To better understand this, we note
that MOTA is a simple combination of TP, FP, IDS, divided
by the total number of groundtruth boxes (GT):

MOTA = 1−
∑
t FPt + FNt + IDSt∑

t GTt

Thus, a method which simply reports no tracks will achieve a
MOTA of 0 (as FP = 0,FN = GT, IDS = 0), seemingly out-
performing all approaches in Table 9. This suggests MOTA
penalizes methods for even trying to detect occluded people.
In general, if a tracker produces more false positives than
true positives, MOTA will always be negative! This indicates
that MOTA is not an appropriate metric for challenging tasks,
such as detecting occluded people.

3. Human Vision Experiment
In the main paper, we briefly described our human vi-

sion experiment to understand the challenges in detecting
occluded people, and to motivate our evaluation and proba-
bilistic approach. We provide further details here. We ask
10 in-house annotators to label fully occluded people in the
MOT-17 [14] training set. To focus annotation effort on
occluded people, we sampled track segments (1) containing
at least 10 contiguous occluded frames, preceded by (2) 10
frames where the person is visible (and at least one where
the person has > 70% visibility). Additionally, we avoid
annotating small people (< 20 pixels on either side), and
limit the number of total frames in a segment to 50.

Annotators labeled at 10 fps (every 3rd frame in a 30fps
video) in a simulated online setup. When an annotator is
asked to label frame t, she has access to past frames (before
t), but not future frames > t. Once the annotator submits a
label for t, she is shown the next frame to label, and is no
longer allowed to edit the annotation for frame t.

Overall, 10 people labeled a total of 113 tracks, 46 of

IDF1

Occl All

M
O

T-
17

DPM 2.9 36.9
+ Ours 7.2 36.8
FRCNN 1.5 55.6
+ Ours 10.5 54.8
SDP 10.9 64.6
+ Ours 17.0 64.7
Tracktor++ 1.3 65.1
+ Ours 15.6 66.8
MIFT 9.4 61.7
+ Ours 16.5 62.6
CTrack 5.4 65.0
+ Ours 16.2 70.2

M
O

T-
20 FRCNN 2.9 42.2

+ Ours 5.0 42.0

PA
N

D
A GT (visible) 2.5 70.2

+ Ours 4.6 62.1

Table 7. Supplementary tracking results on MOT-17 [14], MOT-20
[3] and PANDA [17] train.

IDF1

Occl All

M
O

T-
17

Ours 14.7 58.7
MIFT [6] 10.4 56.4
UnsupTrack [8] 9.7 62.6
GNNMatch [15] 6.9 56.1
GSM Tracktor [13] 7.4 57.8
Tracktor++ [1] 5.2 55.1

M
O

T-
20

Ours 11.2 51.1
Tracktor++ [1] 10.2 48.8
UnsupTrack [8] 9.6 50.6
SORT20 [18] 8.8 45.1

Table 8. Supplementary tracking results on MOT-17 and MOT-20
test set. The best, second-best and third-best methods are high-
lighted.

which were unique. This resulted in a total of 991 annotated
boxes. Our key finding was that even for complete occlusions
(less than 10% visibility), annotators still agreed to a fair
extent (60% IoU-agreement), making the problem harder
than localizing visible people, but still feasible for humans.
To account for these observations, we evaluate with our
invisible-people detection metric at an IoU of 0.5.

4. PANDA and MOT-20
We first discuss the quality of visibility labels in PANDA

followed by the criteria we follow for disabling the depth



IDF1 MOTA

Occl All Occl All

DeepSORT 1.5 55.6 -11.9 49.4
+ Forecast 7.6 53.3 -85.7 42.0
+ Egomotion 9.1 54.5 -72.1 44.6
+ Freespace 9.7 55.0 -35.2 48.1
+ Dep. noise 10.5 54.8 -31.5 48.5

Table 9. Analysis of IDF1- and MOTA-occluded for the MOT-17
train ablations. Note that MOTA is not useful for distinguishing
trackers for difficult tasks, as it leads to negative values (while an
approach which reports no detections would achieve MOTA of 0).

and freespace reasoning in our method for a subset of videos
in PANDA [17] and MOT-20 [3].

Figure 2. ‘Heavy occlusion’ or 33% visibility labels in PANDA
are closer to the < 10% visibility labels in the MOT-17 and MOT-
20 datasets. For this reason, we set the visibility threshold in the
PANDA dataset to 33%.

PANDA classifies the visibility of people into 4 discrete
classes – ‘without occlusion’, ‘partial occlusion’, ‘heavy
occlusion’ and ‘disappearing’. According to the dataset au-
thors, these correspond to 100%, 66%, 33% and 0% visibility
labels on a continuous 0-100 scale. On qualitative inspection,
we find that most 33% visible people in PANDA are fully-
occluded (by our definition of < 10% visibility). Though
the visibility annotation protocol is not detailed in the paper,
we hypothesize that this anomaly exists because only those
people are marked with 0% visibility which strictly have 0
visible pixels. Some examples are shown in Figure 2. Owing
to this, we set the threshold of calling a person invisible in
the PANDA dataset as 33% visibility.

Some sequences in PANDA and MOT-20 are top-down
view videos where occlusions are unlikely to occur. In

such sequences, we revert to using the standard DeepSORT
tracker. For MOT-20, we disable our method on two se-
quences captured from a camera mounted at a high height
based on visual inspection. For the PANDA dataset, which
specifies the building floor on which the camera is mounted,
we use DeepSORT for cameras mounted on or above the 8th
floor. We note that this decision can be easily made in the
real world by practitioners based on the height of the camera.

5. Runtime & Pseudo-code
We precompute depth maps and detection features at 4.5

FPS and 11 FPS respectively. These are used in an online
manner by our pipeline that runs at 4 FPS without explicit
optimization. In Algorithm 1, we present the pseudocode of
our approach.
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