Supplementary material for
BiaSwap: Removing Dataset Bias with Bias-Tailored Swapping Augmentation

This material complements our paper with additional ex-
perimental results and their analysis. First of all, we present
the ablation studies on the proposed modules of our frame-
work, presented in Section A. Afterward, Section B pro-
vides the qualitative and quantitative analysis on the pro-
posed pseudo-bias labels assignment. In Section C, we pro-
vide additional qualitative examples of augmented bias-
swapped images generated by our proposed method, along
with their class activation map (CAM) [9] visualization.
Section D describes the implementation details, such as the
settings for training and the construction of biased-FFHQ
(bFFHQ) dataset. Lastly, we provide a detailed explanation
of the datasets and baselines we utilized in Section E.

A. Ablation study

This section demonstrates the effectiveness of our two
main contributions, 1) separation of bias-contrary and bias-
guiding images and 2) CAM-based patch sampling in
the bias-tailored swapping autoencoder (SwapAE). As ex-
plained in Sections 3.1 and 3.2 of the main paper, the sepa-
ration of contrary and guiding images encourages the swap-
ping autoencoder to translate the bias-guiding image into
the bias-swapped one by reflecting the bias-contrary at-
tributes. In addition, CAM obtained from the biased clas-
sifier enables the sampling of patches based on the highly
discriminative (i.e., highly bias-related) regions, enforcing
the bias-tailored patch discriminator to translate the visual
styles from them. To verify the effectiveness of such meth-
ods, we conduct the ablation studies on these two compo-
nents denoted as ¢l and ¢2 in Table 1 and compare the ac-
curacy of the unbiased test set over Colored MNIST and
bFFHQ datasets.

As the separation is ablated, a pair of two guiding im-
ages become more frequently provided in the SwapAE for
augmenting the new image, compared to the bias-guiding
and bias-contrary pairs. As a result, the translation be-
tween these guiding images generates another guiding im-
age, which does not help to remove the dataset bias in
the training distribution. It is observed in Table 1 that the
model with ¢l ablated shows a critically degraded per-
formance in an unbiased test set compared to the high-
est accuracies in the bias-guiding dataset on both Colored
MNIST and bFFHQ. In contrast, our model trained with
c1 achieves superior performance both in guiding and unbi-
ased test set, demonstrating that the classifier benefits from

the augmented images generated from (bias-guiding, bias-
contrary) pairs. When we ablate the second method ¢2, the
patches are randomly sampled as exactly the same as the
original patch co-occurrence discriminator proposed in the
original paper [8] does. This simply transfers the overall
style of a bias-contrary to a bias-guiding image without
considering the regions of bias-attribute. However, utiliz-
ing the CAM-based patch sampling enables the further op-
timized image translation by focusing on transferring the
bias-related attributes in the image. Table | indicates the
proposed method equipped with ¢2 achieves the best accu-
racy on the unbiased test set of both datasets.

Methods ‘ Bias-guiding ‘ Unbiased
Colored Colored
mNisT PFFHQ | st PFFHQ

BiaSwapw/ocl | 99.92 992 | 43.04 450

BiaSwap w/oc2 | 9898  99.0 | 8416 512

BiaSwap (Full) | 99.24  99.13 | 86.03  58.87

cl : Separation of bias-contrary and bias-guiding pairs.
c2 : CAM-based patch sampling.

Table 1: Quantitative comparisons of our proposed method
and its ablated versions on Colored MNIST and bFFHQ
datasets. The separation of bias-contrary and bias-guiding
pairs (cl), and CAM-based patch sampling (c2) are ablated.

B. Analysis on pseudo-bias label assignment

As introduced in Section 3.1 of the main paper, we uti-
lize a bias score as well as the pseudo-bias label ypseudo t0
divide the entire training dataset into bias-guiding and bias-
contrary samples. To provide the qualitative and quantita-
tive verification on the effectiveness of such division, this
section consists of two parts, 1) qualitative examples classi-
fied as a bias-guiding and bias-contrary by the method and
2) quantitative evaluation of the robustness of ¥/pseudo assign-
ment on the diverse dataset setups, as supplementary to the
Table 3 in the main paper.

B.1. BAR images separated by pseudo-bias label

As mentioned in Section 4.1 in the main paper, the train-
ing dataset of BAR only contains bias-guiding samples cat-
egorized by Nam et al. [7]. However, even if we assume that
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Figure 1: Qualitative examples of divided images of BAR. Images on the left side represent the images classified as a bias-
guiding sample based on our threshold. Images on the right side correspond to the images classified as a bias-contrary sample.

all the samples have an unwanted correlation with the tar-
get label, there must exist a varying degree of bias between
the training samples. In other words, some of the samples
can be more bias-guiding compared to the other images. In
this regard, the proposed dividing strategy can effectively
capture this subtle difference and sorts the samples from

easy to hard one. To be specific, the images with the same
ground-truth target labels can be sorted by their bias score,
which represents how much the image includes the bias at-
tributes. Figure 1 shows the exemplar images which are as-
signed to the bias-guiding (left columns) or bias-contrary
(right columns) via our bias score and the threshold de-



Dataset ‘ % ‘ Precision (%) Recall (%) F1 score (%)

| 950 |  97.09 98.43 93.55
Colored | 980 |  99.55 91.76 95.31
MNIST | 990 |  97.54 92.12 94.74

| 995 |  99.98 95.78 97.79

| 950 | 6834 80.66 72.56
Corrupted | 98.0 | 64.38 82.14 69.49
CIFARIO 990 | 60.7 87.28 66.13

| 995 | 5861 87.09 63.64
bFFHQ | 99.0 |  65.52 70.62 67.70

Table 2: Quantitative evaluations on the gp;,s assignment via
precision, recall, and F1 score metrics. We report the eval-
uation scores for 99.5%, 99%, 98%, and 95% of both Col-
ored MNIST and Corrupted CIFAR10, and 99% of bFFHQ,
except BAR where no bias label is accessible.

scribed in Eqs 1 and 2 in the main paper, respectively. While
unwanted correlations shown in the left columns are found
in the most of training data, it turns out that some of the
samples are relatively hard-to-learn, where there exist less
severe correlations between the bias attributes and the tar-
get label. For instance, for the images labeled with climb-
ing in the first row, most of the climbers are located on the
rock which has an uneven texture and brown color. In this
context, the examples with the sky in the most part of their
backgrounds or with colors other than brown are classified
as a bias-contrary sample. Similarly, for the images labeled
with diving in the second row, divers are usually in the deep
sea or taking a similar body motion. However, examples on
the right side are conflicting with the bias in that they con-
tain a unique diving pose. Some of them also are black-and-
white pictures, which is uncommon in the training dataset.
For the fishing images on the right side of the third row,
the fisher in the lake surrounded by the dense trees or the
fisher near the river represents that such places are not the
usual cases in the training distribution. This implies that our
method empirically well divides the samples based on the
relative severity of the bias between the images.

B.2. Quantitative evaluation on pseudo-bias label

Table 2 demonstrates the quantitative evaluation scores
of our proposed dividing method on the Colored MNIST,
Corrupted CIFAR10, and bFFHQ datasets. As our method
works as a binary classifier to discriminate whether the im-
ages are bias-guiding or bias-contrary, we measure the pre-
cision, recall, and F1 score for both bias-guiding and bias-
contrary classes on the unbiased test set. Following the same
evaluation protocol in Section 4.2 of the main paper, we add
the scores of bias-guiding and bias-contrary ones and divide
them by two in order to obtain the overall scores.

Table 2 indicates that the dividing method works well on

classifying the bias-contrary as well as bias-guiding sam-
ples, achieving reasonable results in precision, recall, and
F1 score. In consequence, the robustness of the method en-
ables to guarantee of the effective augmentation of bias-
swapped images in the bias-tailored swapping autoencoder.

C. Additional qualitative examples of bias-
swapped images

To supplement Section 4.3 in the main paper, this sec-
tion provides the additional qualitative results of the bias-
swapped samples as well as their CAMs in Figure 2. In
order from left to right, bias-guiding sample, bias-contrary
sample, CAM, heatmap of CAM visualized on the bias-
contrary image, and the bias-swapped image generated
from BiaSwap are presented. The first and second rows in-
clude the examples of Colored MNIST and Corrupted CI-
FAR10, respectively. Similar to the ones in the main paper,
CAM heatmaps on the Colored MNIST samples show that
the biased classifier mainly focuses on the regions where
the bias-correlated colors are located. For example, CAM
described in the first row follows the region of blue colors
in the digit. For the samples of the Corrupted CIFAR10, our
model properly transfers the bias attributes of the second
column images into the ones in the first column, maintain-
ing the bias-irrelevant visual aspects unchanged. This re-
sults in the bias-swapped images shown in the last column.
For example, the corruption applied on the car in the second
column is transferred into another car in the first column,
while the shape of the first column car is maintained in the
generated bias-swapped car in the last column.

D. Implementation details

This section provides the specific values of the thresh-
old for separation of bias-guiding and bias-contrary groups
over each dataset. Afterward, we provide the detailed archi-
tecture of two main networks, bias-tailored swapping au-
toencoder and debiased classifier. In addition, we provide
the training details, such as hyper-parameters for each ob-
jective function, over the dataset we utilized.

Threshold for division To separate the training samples
into bias-contrary and bias-guiding sets in an unsupervised
manner, we utilize the mean value of confusing scores of
the images as our threshold in each dataset, as described in
Eq. 2 in the main paper. Such threshold values correspond
to 0.0358, 0.0903, 0.0232, and 0.008 for Colored MNIST,
Corrupted CIFAR10, BAR, and bFFHQ, respectively.

Bias-tailored swapping autoencoder We follow the orig-
inal network architecture of the encoder, decoder, and dis-
criminator proposed in Park et al. [8] to maintain its im-
age translation performance. However, to design a CAM-
based patch sampling for the co-occurrence discriminator
as proposed in Section 3.2 in the main paper, we sample
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Figure 2: Qualitative examples of generated images via Bi-
aSwap on Colored MNIST (top), Corrupted CIFAR10 (mid-
dle) and bFFHQ (bottom). Each sample is listed in order
of bias-guiding, bias-contrary, CAM on the bias-contrary,
heatmap of CAM on the bias-contrary, and bias-swapped
image.

the patches using the patch-wise probability based on the
CAM of the biased classifier, instead of random sampling.
For the biased classifier, we use a multi-layer perceptron
(MLP) with three hidden layers for Colored MNIST and
ResNet-18 [2] for the rest of the datasets. The classifier is
trained with the GCE loss with hyperparameter ¢ of 0.7.
As the parameters of the classifier are not jointly optimized
with those of bias-tailored swapping autoencoder, the clas-
sifier is fully trained to be biased. We train and evaluate the
biased classifier with the size of 28 x 28 and 32 x 32 images
for Colored MNIST and Corrupted CIFAR10, and 128 x 128
for BAR and bFFHQ datasets. Each channel of the images
are normalized with the mean of (0.5, 0.5, 0.5) and the stan-
dard deviation of (0.5,0.5,0.5). All other details are identi-
cal to the training of the debiased classifier. To train the au-

toencoder, we set the hyper-parameters for each loss func-
tions as )\recon = )\GAN,recon = )\GAN,swap = )\CooccurGAN =1
To prevent the patch discriminator from only sampling the
same single patch due to the high probability close to one,
we utilize the temperature scaling with 7 = 10, for smooth-
ing the probability. Both the swapping autoencoder and the
classifier are trained by using an Adam [5] optimizer with
,81 =0and 62 = 0.99.

Debiased classifier After we fully optimize the bias-
tailored swapping autoencoder, we augment the dataset us-
ing the pairs of bias-guiding and contrary images given
from the threshold. Given these additional images, which
we call bias-swapped images in the main paper, we train
an MLP with three hidden layers for Color MNIST and
ResNet-18 for the rest of the datasets. We train and evaluate
the classifier with the size of 28 x 28, 32 x 32, 128 x 128, and
224 x 224 images for Colored MNIST, Corrupted CIFAR10,
bFFHQ, and BAR datasets, respectively. We use Adam op-
timizer with 57 = 0.9 and B = 0.999, and learning rate as
0.001. We use a batch size of 256 and train a classifier for
200 epochs for Color MNIST, Corrupted CIFAR10, BAR,
and bFFHQ datasets.

E. Datasets and Baselines
E.1. Datasets

Corrupted CIFAR10 As proposed in Hendrycks and Diet-
terich [3], we apply the certain type of texture corruptions
onto the CIFAR10 dataset [6]. Among 15 types of corrup-
tions, we utilize the Snow, Frost, Fog, Brightness, Contrast,
Spatter, Elastic, JPEG, Pixelate, and Saturate in our pa-
per. Such corruptions are applied with the strong correla-
tion with the original classes of CIFAR10 dataset, which
are Plane, Car, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and
Truck. In addition, we utilize the corruptions with the high-
est degree of severity (i.e., 4) in our dataset.

bFFHQ We newly construct the biased FFHQ dataset
(bFFHQ) which has a strong correlation between the age
(target) and gender (bias), based on the Flickr-Faces-HQ
(FFHQ) dataset [4]. FFHQ consists of 70,000 images at
1024 x 1024 resolution and contains the considerable vari-
ation of human faces in terms of age, ethnicity, and image
background. Each face contains different attributes includ-
ing head pose, gender, age, mustache, glasses, and emo-
tion. Among these attributes, we utilize the age and gender
attributes. To be specific, the attribute ‘young’ (i.e., aged
10 — 29) is highly correlated with ‘women’ and ‘old’ (i.e.,
aged 40 — 59) is connected with ‘men’. Among the total
70,000 data, 19,200 samples are utilized as the training
dataset according to the criteria of unwanted correction, and
2,000 unbiased samples that each attribute is uniformly dis-
tributed are utilized as an evaluation set.

BAR This dataset includes the images which have a cor-



relation between human actions and backgrounds, which is
curated by Nam et al. [7]. It does not have the ground-truth
bias label, unlike other datasets.

E.2. Baselines

ReBias ReBias [ ] assumes the fexture as the unwanted bias
type and exploits the biased classifier with a limited kernel
size in order to mainly capture the texture attributes from the
images. By learning the representations statistically inde-
pendent from such texture representations, ReBias achieves
robust classification accuracies against the texture bias. We
train ReBias with the same training protocol as suggested
in the original paper including network architecture and the
hyper-parameters. Note that for Colored MNIST, ReBias
utilizes the convolutional network for capturing the texture
cues, while other baselines including ours exploit the MLP
with three hidden layers.

LfF As mentioned in Sections 1 and 2 of the main paper,
LfF assumes the general characteristic of bias as “easy-
to-learn" and proposes the re-weighting-based debiasing
method based on the GCE loss. To the best of our knowl-
edge, this work first learns the debiased representation with-
out any prior assumption on the bias type. We follow the
official implementation setups of LfF, except for the net-
work architecture of ResNet-20 for the Corrupted CIFAR10
dataset. As a fair comparison, we utilize the ResNet-18 ar-
chitecture for all the baselines including LfF.

SIN As mentioned in Section 4.3 of the main paper, we uti-
lize SIN as another baseline for validating the importance
of realistic image generation in dataset augmentation. For
the augmentation of datasets we utilize, we follow the of-
ficial implementation of SIN and only replace the original
ImageNet dataset with each biased dataset. Style images are
identical to official ones.
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