
[Appendix]
Continual Learning on Noisy Data Streams via Self-Purified Replay

This appendix enlists the following additional materials.

I. Posterior in the Beta Mixture Model. Sec. 1

II. Extended Related Work. Sec. 2

III. Experiment Details. Sec. 3

IV. Extended Results & Analyses. Sec. 4

i. Efficiency of Eigenvector Centrality. Sec. 4.1

ii. Noise-Free Performance. Sec. 4.2

iii. Noise Robustness Comparison. Sec. 4.3

iv. Features from ImageNet Pretrained Model.
Sec. 4.4

v. Analyses of Stochastic Ensemble Size (Emax).
Sec. 4.5

vi. Filtering performances on CIFAR-100. Sec. 4.6

vii. Self-Replay with Noisy Labeled Data. Sec. 4.7

viii. Analyses of the Results on WebVision. Sec. 4.8

ix. Episode Robustness. Sec. 4.9

x. Buffer Size Analysis. Sec. 4.10

xi. Variance. Sec. 4.11

1. Posterior in the Beta Mixture Model
We provide some details about how to fit beta mixture

models [26] with the EM-algorithm [12] to obtain the pos-
terior p(z|c) for the central point with score c.

In the E-step, fixing πz, αz, βz , we update the latent vari-
ables using the Bayes rule:

γz(c) = p(z|c) = πzp(c|αz, βz)∑Z
j=1 πjp(c|αj , βj)

. (1)

In the M-step, fixing the posterior γz(c), we estimate the
distribution parameters α and β using method of moments:

αz = c̄z(
c̄z(1− c̄z)

s2z
− 1), βz =

αz(1− c̄z)

c̄z
, (2)

where c̄z is the weighted average of the centrality scores
from all the points in the delayed batch, and s2z is the
weighted variance estimate as

c̄z =

∑N
i=1 γz(ci)ci∑N
i=1 γz(ci)

, (3)

s2z =

∑N
i=1 γz(ci)(ci − c̄z)

2∑N
i=1 γz(ci)

, (4)

πz =
1

N

N∑
i=1

γz(ci). (5)

Finally, we arrive at p(z|c) ∝ p(z)p(c|z).

2. Extended Related Work

2.1. Continual Learning

Continual learning is mainly tackled from three main
branches of regularization, expansion, and replay.

Regularization-based Approaches. Methods in this
branch prevent forgetting by penalizing severe drift of
model parameters. Learning without Forgetting [42] em-
ploys knowledge distillation to preserve the previously
learned knowledge. Similarly, MC-OCL [14] proposes
batch-level distillation to balance stability and plasticity in
an online manner. Elastic Weight Consolidation [32] finds
the critical parameters for each task by applying the Fisher
information matrix. Recently, Selfless Sequential Learning
[2] enforces representational sparsity, reserving the space
for future tasks.

Expansion-based Approaches. Many methods in this
branch explicitly constrain the learned parameters by freez-
ing the model and instead allocate additional resources to
learn new tasks. Progressive Neural Network [59] prevent
forgetting by prohibiting any updates on previously learned
parameters while allocating new parameters for the training
of the future tasks. Dynamically Expandable Networks[73]
decides on the number of additional neurons for learning
new tasks using L2 regularization for sparse and selective
retraining. CN-DPM [36] adopts the Bayesian nonparamet-
ric framework to expand the model in an online manner.

Replay-based Approaches. The replay-based branch
maintains a fixed-sized memory to rehearse back to the
model to mitigate forgetting. The fixed-sized memory could
be in the form of a buffer for the data samples of previous
tasks or the form of generative model weights [60] to gener-
ate the previous tasks’ data. GEM [43] and AGEM [6] use
a buffer to constrain the gradients in order to alleviate for-
getting. In [7], training a model even on tiny episodic mem-
ory can achieve an impressive performance. Some recent
approaches[58, 27] combine rehearsal with meta-learning
to find the balance between transfer and interference.

Online Sequential Learning. Online sequential learn-
ing is closely related to continual learning research, as it
assumes that a model can only observe the training sam-
ples once before discarding them. Thus, it is a fundamental
problem to maintain the buffer or selecting the samples to
be rehearsed. ExStream [22] proposes the buffer mainte-
nance method by clustering the data in an online manner.
GSS [55] formulates sample selection for the buffer as a
constraint reduction, while MIR [1] proposes a sample re-
trieving method from the buffer by selecting the most in-
terfered samples. Considering real-world data are often im-
balanced and multi-labeled, PRS [30] tackles this problem
by partitioning the buffer for each class and maintaining it
to be balanced. Also, combining graphs or meta-learning
with online continual learning has been studied. Graphs are
adopted to represent the relational structures between sam-
ples [64], and the meta-loss is applied for learning not only
model weights but also per-parameter learning rates [18].
Recently, GDumb [54] and MBPA++ [11] show training a
model at inference time improves the overall performance.

2.2. Noisy Labels

Learning with noisy labeled data has been a long-studied
problem. In several works [76, 4, 46] make an important
empirical observation that DNNs usually learn the clean
data first then subsequently memorize the noisy data. Re-
cently, a new benchmark [28] has been proposed to simulate
real-world label noise from the Web. Noisy labeled data
learning can be categorized into loss regularization, data re-
weighting, label cleaning, clean sample selection via train-
ing dynamics.

Loss Regularization. This approach designs the noise
correction loss so that the optimization objective is equiv-
alent to learning with clean samples. [52] proposes us-
ing a noise transition matrix for loss correction. [17] ap-
pends a new layer to DNNs to estimate the noise transi-
tion matrix while [24] additionally uses a small set of clean
data. [77] studies a set of theoretically grounded noise-
robust loss functions that can be considered a generalization
of the mean absolute error and categorical cross-entropy.
[70, 21] propose new losses based on information theory.
[37] adopts the meta-loss to find noise-robust parameters.

[3] uses a bootstrapping loss based on the estimated noise
distribution.

Data Re-weighting. This approach suppresses the con-
tribution of noisy samples by re-weighting the loss. [57]
utilizes meta-learning to estimate example importance with
the help of a small clean data. [67] uses a Siamese network
to estimate sample importance in an open-set noisy setting.

Label Cleaning. This approach aims at explicitly repair-
ing the labels. [45] shows that using smooth labels is benefi-
cial in noisy labeled data learning. [63, 72] propose to learn
the data labels as well as the model parameters. [56, 62] re-
label the samples using the model predictions. Additionally,
[33] adopts the active learning strategy to choose the sam-
ples to be re-labeled. [65, 41, 15] employ multiple models,
while [20, 48, 38] utilize prototypes to refine the noisy la-
bels.

Training Procedures. Following the observations that
clean data and easy patterns are learned prior to noisy
data [76, 4, 46], several works propose filtering methods
based on model training dynamics. [29] adopts curriculum
learning by selecting small loss samples. [69, 15, 19, 74, 47]
identify the clean samples using losses or predictions from
multiple models and feed them into another model. [25, 53,
49] filter noisy samples based on the accumulated losses or
predictions. [8] proposes to fold the training data and filter
clean samples by cross-validating those split data.

2.3. Self-supervised Learning

Self-supervised learning enables the training of a model
to utilize its own unlabeled inputs and often shows remark-
able performance on downstream tasks. One example of
self-supervised learning uses a pretext task, which trains a
model by predicting the data’s hidden information. Some
examples include patch orderings [13, 50], image impaint-
ing [51], colorization [71], and rotations [16, 10]. Besides
designing heuristic tasks for self-supervised learning, some
additional works utilize the contrastive loss. [9] proposes
a simpler contrastive learning method, which performs rep-
resentation learning by pulling the randomly transformed
samples closer while pushing them apart from the other
samples within the batch. [23] formulates contrastive learn-
ing as a dictionary look-up and uses the momentum-updated
encoder to build a large dictionary. Recently, [39] ex-
tends instance-wise contrastive learning to prototypical con-
trastive learning to encode the semantic structures within
the data.

3. Experiment Details
We present the detailed hyperparameter setting of SPR

training as well as the baselines. We resize the images into
28 × 28 for MNIST [35], 32 × 32 for CIFAR-10 [34], and
84 × 84 for WebVision [40]. We set the size of delayed
and purified buffer to 300 for MNIST, 500 for CIFAR-10,

and 1000 for WebVision on all methods. We use the batch
size of self-supervised learning as 300 for MNIST, 500 for
CIFAR-10, and 1000 on WebVision. The batch size of su-
pervised learning is fixed to 16 for all experiments. The
number of training epochs for the base and expert network
are respectively 3000 and 4000 on all datasets, while fine-
tuning epochs for the inference network is 50. The NTXent
loss [9] uses a temperature of 0.5, and Emax = 5 for SPR.
We use the Adam optimizer [31] with setting β1 = 0.9,
β2 = 0.999, ϵ = 0.0002 for self-supervised training of both
base and expert network, and ϵ = 0.002 for supervised fine-
tuning.

The hyperparameters for the baselines are as follows.

• Multitask [5]: We perform i.i.d offline training for 50
epochs with uniformly sampled mini-batches.

• Finetune: We run online training through the sequence
of tasks.

• GDumb [54]: As an advantage to GDumb, we allow
CutMix [75] with p = 0.5 and α = 1.0. We use the
SGDR [44] schedule with T0 = 1 and Tmult = 2.
Since access to a validation data in task-free contin-
ual learning is not natural, the number of epochs is set
to 100 for MNIST and CIFAR-10 and 500 for WebVi-
sion.

• PRS [30]: We set ρ = 0.

• L2R [57]: We use meta update with α = 1, and set
the number of clean data per class as 100 and the clean
update batch size as 100.

• Pencil [72]: We use α = 0.4, β = 0.1, stage1 = 70,
stage2 = 200, λ = 600.

• SL [68]: We use α = 1.0, β = 1.0.

• JoCoR [69]: We set λ = 0.1.

• AUM [53]: We set the learning rate to 0.1, momentum
to 0.9, weight decay to 0.0001 with a batch size of 64
for 150 epochs. We apply random crop and random
horizontal flip for input augmentation.

• INCV [8]: We set the learning rate to 0.001, weight de-
cay to 0.0001, a batch size 128 with 4 iterations for 200
epochs. We apply random crop and random horizontal
flip for input augmentation.

4. Extended Results & Analyses

We provide more in-depth results and analyses of the ex-
periments in this section.

4.1. Efficiency of Eigenvector Centrality

The time and space complexity of Eigenvector centrality
is O(n2), where n is the number of data. Our online sce-
nario constraints the size of n (Delayed buffer size) to be
less than 2% of the entire dataset. Also, for k classes, the
complexity reduces to O((n/k)2) since the Self-Centered
filter computes per class. On Quadro RTX GPU, building
the adjacency matrices took less than 0.0003s. On a CPU,
Eigenvector centrality computation took 0.4s, 1.3s, 7.1s for
buffers of 300, 500, 1K, respectively, which can speed up to
188 by GPU [61].

4.2. Noise-Free Performance

Table 1 compares our SPR and Self-Replay’s perfor-
mance against Gdumb’s reported performances on MNIST
and CIFAR-10. Interestingly, our Self-Replay performs bet-
ter than Gdumb, showing great promise in the direction
of self-superved continual learning in general. However,
SPR’s performance is below that of Gdumb when com-
pletely noise free. We speculate SPR’s mechanics to re-
tain clean samples lead to a tradeoff with precise class fea-
ture coverage which seems to be of relative importance in a
noise-free setting.

MNIST CIFAR-10

Gdumb [54] 91.9 45.8
Self-Replay 88.9 47.4
SPR 85.5 44.3

Table 1. Noise Free performances of Self-Replay and SPR com-
pared with Gdumb [54]’s reported performances. Buffer size is
fixed to 500.

4.3. Noise Robustness Comparison

Figure 1 contrasts the noise robustness of the strongest
and closest baseline GDumb to Self-Replay under 40% and
60% noise levels while removing the Self-Centered filter
from our method. Even still, Self-Replay is much more ro-
bust against high amounts of noisy labels at every task, vali-
dating that Self-Replay alone is able to mitigate the harmful
effects of noise to a great extent.

4.4. Features from ImageNet Pretrained Model

We would like to clarify that our scenario and approach
is much different and novel in that, the algorithm assumes
an online stream of data and no ground-truth data is avail-
able to supervisedly train a noise detector. Not only that, the
data we have to work is very small (e.g., 300, 500, 1000)
as the purpose is for a Delayed buffer to set aside small
amounts from a stream of data for verification by our self-
supervisedly trained Expert model. This was also motivated
by the empirical evidence that using a supervised learning

T1 T2 T3 T4 T5
Task Progression

0.10

0.15

0.20

0.25

0.30

A
cc

ur
ac

y

Self-Replay GDumb

T1 T2 T3 T4 T5
Task Progression

0.10

0.15

0.20

0.25

A
cc

ur
ac

y

(a) Noise rate 40% (b) Noise rate 60%
Figure 1. Noise Robustness of Self-Replay and GDumb on
CIFAR-10. Both models use conventional reservoir sampling (i.e.,
uniform random sampling from the input data stream) for the re-
play (purified) buffer; that is, no purification of the input data is
performed. The vivid plots indicate the mean of five random seed
experiments.

technique such as AUM [53], INCV [8], and using an Ima-
geNet supervisedly pre-trained model for extracting the fea-
tures led to worthless performances in the Table 2, 3.

CIFAR-10
symmetric

noise rate (%) 20 40 60

ImageNet pretrained -9.0 -7.0 3.0
Self-supervised 75.5 70.5 54.3

Table 2. Filtered noisy label percentages in the purified buffer.
We compare filtering performances from the self-supervisedly
learned features with the ones from the ImageNet pretrained fea-
tures. We set Emax = 5.

4.5. Analyses of Stochastic Ensemble Size (Emax)

Figure 2 displays the performance of Stochastic Ensem-
ble by increasing the ensemble sizes (Emax) from 1 to 40.
Stochastic Ensemble performs better in all ensemble sizes
than the non-stochastic BMM in terms of the percentages
of filtered noisy labels on both MNIST and CIFAR10 with
60% noisy labels. A substantial boost is seen in the filter-
ing performance up to 10. After 20, the performance starts
to plateau on both MNIST and CIFAR-10. The empirically
suggested optimal number of Emax may be around 20 for
both MNIST and CIFAR-10 and this is further confirmed in
Table 3 where we fix Emax = 20 and the overall filtering
percentage increase by 2.4% on average, compared to the
results in the main draft with Emax = 5.

4.6. Filtering performances on CIFAR-100.

Table 4 compares the filtering performances of SPR with
the two state-of-the-art label filtering methods [53, 8] on

1 5 10 20 30 40
Ensemble Size

85

90

95

(a) MNIST Symmetric Noise rate 60%

Stochastic Ensemble Non-stochastic

1 5 10 20 30 40
Ensemble Size

40

50

60

(b) CIFAR-10 Symmetric Noise rate 60%
Fi

lte
re

d
N

oi
sy

 L
ab

el
 P

er
ce

nt
ag

e
(%

)

Figure 2. Filtered noisy label percentages in the purified buffer
by increasing the ensemble size (Emax) on MNIST and CIFAR-10
with 60% noise rate. Stochastic Ensemble significantly performs
better than the static version.

MNIST CIFAR-10
symmetric asymmetric symmetric asymmetric

noise rate (%) 20 40 60 20 40 20 40 60 20 40

AUM [53] 7.0 16.0 11.7 30.0 29.5 36.0 24.0 11.7 46.0 30.0
INCV [8] 23.0 22.5 14.3 37.0 31.5 22.0 18.5 9.3 37.0 30.0
Non-stochastic 79.5 96.3 84.5 96.0 88.5 50.5 54.5 38.0 53.0 50.5
SPR (Ours) 95.0 96.8 95.0 99.9 97.5 79.5 76.3 59.5 72.0 59.0

Table 3. Filtered noisy label percentages in the purified buffer.
We compare SPR to two other state-of-the-art label filtering meth-
ods. We set Emax = 20.

CIFAR-100. SPR performs the best in all random symmet-
ric noise and superclass symmetric noise with different lev-
els of 20%, 40%, and 60%. Even the filtering performance
on CIFAR-100 is superior to CIFAR-10. We believe this re-
sult is mainly due to the classes in CIFAR100 being more
specific than CIFAR10 (e.g., automobile, airplane, bird in
CIFAR10 where CIFAR100 has the trees superclass divided
into maple, oak, palm, pine, willow), allowing SPR to self-
supervisedly learn much more distinct features per class.
This result is further reinforced on the WebVision dataset
where SPR shows a weakness in filtering abstract classes
such as “Spiral, in which the details can be found in Sec 4.8.

T1 T2 T3 T4 T5
Task Progression

20

25

30

35

40

45

50

A
cc

ur
ac

y

(a) Noise rate 20%

T1 T2 T3 T4 T5
Task Progression

20

25

30

35

40

45

50

A
cc

ur
ac

y

(b) Noise rate 40%

with delayed buffer without delayed buffer

T1 T2 T3 T4 T5
Task Progression

20

25

30

35

40

45

50

A
cc

ur
ac

y

(c) Noise rate 60%

Figure 3. The overall accuracy of SPR over sequential task progression on CIFAR-10 with different noise rates. Training with the delay
buffer means that self-supervised learning is performed using the samples in both the delay buffer and the purified buffer, whereas training
without the delay buffer means it is done with the samples in the purified buffer only.

random symmetric superclass symmetric
noise rate (%) 20 40 60 20 40 60

AUM [53] 33.5 46.8 13.9 25.0 21.4 32.4
INCV [8] 46.9 34.8 22.2 33.7 27.0 15.4
SPR 82.9 79.6 64.8 76.5 69.4 56.0

Table 4. Filtered noisy label percentages in the purified buffer.
We compare SPR to two other state-of-the-art label filtering meth-
ods on CIFAR-100. We set Emax = 5. The buffer size is set to
5000. “random symmetric” refers to noise randomized across the
100 classes, while “superclass symmetric” refers to noise random-
ized within the CIFAR-100 superclasses [34, 36].

4.7. Self-Replay with Noisy Labeled Data

Table 5 compares the overall accuracy of Self-Replay
when self-supervised training is performed with and with-
out the delay buffer. Training with the delay buffer means
using the samples in both the delay buffer Bd (red) and
the purified buffer Bp (blue). In contrast, training with-
out the delay buffer means using purified samples Bp (blue)
only. We remind the normalized temperature-scaled cross-
entropy loss in the main manuscript as

Lself = −
2(Bd+Bp)∑

i=1

log
eu

T
i uj/τ∑2(Bd+Bp)

k=1 1k ̸=ieu
T
i uk/τ

. (6)

We observe an approximately 0.6% increase in MNIST
and 3.3% increase in CIFAR-10 when using the delay buffer
as well, even though it contains noisy labeled samples. We
speculate that slight improvement is attained in MNIST due
to the simplicity of the features. On the other hand, no-
ticeable margins are seen in CIFAR-10, which we further
analyze on a per-task basis, shown in Figure 3. The gaps

are small in the earlier tasks but become more prominent
as more tasks are seen. Moreover, the differences are even
more significant when the level of noise rate increases. The
take-home message here is that self-supervised training can
benefit from the increased data even if it could possibly con-
tain noisy labels.

MNIST CIFAR-10
symmetric symmetric

noise rate (%) 20 40 60 20 40 60

SR with DB 91.0 91.8 91.1 48.5 49.1 48.9
SR without DB 90.3 91.0 90.5 45.5 46.1 44.9

Table 5. The overall accuracy of SPR with or without the samples
in the delay buffer (DB). Self-supervised training can more benefit
from more data even though some of them are possibly noisy

4.8. Analyses of the Results on WebVision

In the main manuscript, we briefly discuss the observa-
tion that Self-Replay and the Self-Centered filter do not syn-
ergize well on the WebVision dataset. In this section, we
provide extended discussions about this behavior with qual-
itative and quantitative analyses.

Qualitative Analysis. We pointed out that classes such
as “Spiral” or “Cinema” are highly abstract by overarching
broad related knowledge, which is at the same time cor-
rupted by noise. We show 50 random training data in Fig-
ure 5 and Figure 7 for “Spiral” and “Cinema”, respectively.
The Self-Centered filter samples for the same classes are
also shown in Figure 6 and Figure 8. As visualized, it is not
easy to interpret what the central concept is.

This is contrasted by the training samples in the classes

GDumb Self-Replay Self-Centered filter SPR

“Cinema” 34.3 46.4 19.6 26.8
“Spiral” 8.6 23.2 4.8 9.0

“ATM” 23.6 52.8 26.5 54.0
“Frog” 33.0 52.4 45.2 55.0

Table 6. Comparison of random sampling based methods (GDumb
and Self-Replay) and the methods using the proposed Self-
Centered filtering technique (Self-Centered filter and SPR). Ran-
dom sampling is better for abstract classes such as “Cinema” and
“Spiral”, whereas Self-Centered filtering is better for ordinary
noisy classes such as “ATM” or “Frog”. The results are the mean
of five unique random seed experiments.

“ATM” and “Frog” in Figure 11 and Figure 9. The classes
contain noisy samples but represent the class concept with-
out a high amount of abstraction. We also show the Self-
Centered filter samples for the classes in Figure 12 and Fig-
ure 10. It is much more visually evident what class the sam-
ples represent.

Quantitative Analysis. Table 6 contrasts the perfor-
mance of the two topics on GDumb, Self-Replay, Self-
Centered filter, and SPR. The Self-Centered filter and SPR
use the proposed Self-Centered filtering technique, whereas
GDumb and Self-Replay use random sampling instead. The
performances also support that random sampling may be a
better performer for noisy and abstract classes, as GDumb
and Self-Replay attain better performances. On the other
hand, for ordinary noisy classes such as “ATM” or “Frog,”
the Self-Centered filter and SPR perform stronger than ran-
dom sampling and show a synergetic effect.

4.9. Episode Robustness

Table 7 (episode B) and Table 8 (episode C) report the
results of two different randomly permuted episodes. We
include all of GDumb [54] combinations and the single best
performing combination of PRS [30] and CRS [66] for each
dataset. Even in two additional random episode experi-
ments, SPR performs much stronger than all the baselines
on all datasets with real, symmetric, or asymmetric noise.

4.10. Buffer Size Analysis

SPR requires a larger amount of memory than some
baselines (excluding L2R), but the usage of the memory
is different in that, a hold-out memory (Delay Buffer) is
used for the purpose of filtering out the noisy labels, while
only the Purified Buffer is used to mitigate the amount of
forgetting. Hence, simply giving the other baselines a re-
play buffer twice as big would not be a fair comparison
in the viewpoint of continual learning alone. Nonetheless,
we run the experiments shown in Table 10, where all of
GDumb [54] combinations are allowed twice the buffer size

for replay. Even so, SPR using half the buffer size is able to
outperform all the other baselines. Furthermore, to inform
how the buffer size affects the results, we halve the origi-
nal used buffer size and report the results in Table 9. SPR
still strongly outperforms the baselines in all the datasets
and noise rates. These two experiments show that SPR
is robust to the buffer size, and its performance is due to
self-supervised learning and the clean-buffer management,
rather than using the hold-out memory for the Delay buffer.

4.11. Variance

Figure 4 visualizes the variances of top-3 best-
performing methods for MNIST, CIFAR-10 with 40% sym-
metric noise rate, and WebVision with real-noise. Among
the symmetric noise experiments with five different random
seeds, SPR shows a minor amount of variance throughout
the tasks. However, for WebVision, a noticeable amount of
fluctuations are seen for all three approaches.

MNIST CIFAR-10 WebVision
symmetric asymmetric symmetric asymmetric real noise

noise rate (%) 20 40 60 20 40 20 40 60 20 40 unknown

Multitask 0% noise [5] 98.6 84.7 -
Multitask [5] 94.5 90.5 79.8 93.4 81.1 65.6 46.7 30.0 77.0 68.7 55.5
CRS + L2R [57] 80.8 74.1 59.7 85.3 79.8 29.8 23.1 16.0 36.4 36.1 -
CRS + Pencil [72] - - - - - - - - - - 25.1
PRS + L2R [57] 80.7 74.0 60.4 83.2 80.1 30.8 22.8 15.0 36.3 32.9 -
PRS + Pencil [72] - - - - - - - - - - 26.5
MIR + L2R [57] 79.6 68.6 51.6 83.2 79.5 31.1 21.0 14.5 34.7 33.6 -
MIR + Pencil [72] - - - - - - - - - - 22.6
GDumb [54] 70.1 54.6 32.3 78.2 71.1 29.6 22.4 16.5 33.0 30.9 33.3
GDumb + L2R [57] 67.1 59.2 40.6 70.6 68.7 27.0 25.5 21.8 29.9 29.4 -
GDumb + Pencil [72] 70.2 53.9 35.4 77.5 70.2 28.1 21.0 15.9 31.5 30.6 27.5
GDumb + SL [68] 65.6 47.5 30.5 73.3 68.5 27.1 22.6 16.8 33.2 31.4 32.5
GDumb + JoCoR [69] 68.3 56.0 41.0 78.5 70.9 26.6 21.1 15.9 32.9 32.2 22.9
SPR 86.8 87.2 82.1 86.6 85.5 42.0 42.4 39.1 44.4 43.3 41.6

Table 7. Overall accuracy on episode B after all sequences of tasks are trained. The buffer size is set to 300, 500, 1000 for MNIST,
CIFAR-10, and WebVision, respectively. We report all of GDumb [54] combinations and single best performing combination of PRS [30]
and CRS [66]. Some empty slots on WebVision are due to the unavailability of clean samples required by L2R for training [57]. The results
are the mean of five unique random seed experiments.

MNIST CIFAR-10 WebVision
symmetric asymmetric symmetric asymmetric real noise

noise rate (%) 20 40 60 20 40 20 40 60 20 40 unknown

Multitask 0% noise [5] 98.6 84.7 -
Multitask [5] 94.5 90.5 79.8 93.4 81.1 65.6 46.7 30.0 77.0 68.7 55.5
CRS + L2R [57] 79.9 74.9 58.2 84.4 79.4 29.3 24.4 16.8 37.2 37.5 -
CRS + Pencil [72] - - - - - - - - - - 29.9
PRS + L2R [57] 80.5 72.3 55.2 83.8 80.1 30.6 23.3 16.3 37.2 36.1 -
PRS + Pencil [72] - - - - - - - - - - 28.5
MIR + L2R [57] 80.3 69.7 47.1 83.0 77.6 28.2 21.3 15.6 36.3 34.3 -
MIR + Pencil [72] - - - - - - - - - - 22.4
GDumb [54] 71.8 52.8 37.5 79.2 72.1 28.7 23.0 16.3 34.2 31.9 31.6
GDumb + L2R [57] 67.7 58.2 42.7 69.3 67.6 28.9 24.8 19.7 31.8 29.4 -
GDumb + Pencil [72] 69.0 54.2 37.8 78.6 71.2 27.5 21.0 16.6 31.3 31.8 28.5
GDumb + SL [68] 65.4 48.4 29.1 72.4 67.7 28.3 22.9 15.0 31.4 31.9 31.6
GDumb + JoCoR [69] 70.4 59.0 40.6 77.4 70.6 27.8 22.3 15.5 33.4 31.7 24.3
SPR 86.6 87.5 84.4 87.0 87.3 43.7 43.1 39.8 44.3 43.2 40.2

Table 8. Overall accuracy on episode C after all sequences of tasks are trained. The buffer size is set to 300, 500, 1000 for MNIST,
CIFAR-10, and WebVision, respectively. We report all of GDumb [54] combinations and single best performing combination of PRS [30]
and CRS [66]. Some empty slots on WebVision are due to the unavailability of clean samples required by L2R for training [57]. The results
are the mean of five unique random seed experiments.

MNIST CIFAR-10 WebVision
symmetric asymmetric symmetric asymmetric real noise

Buffer size 150 150 250 250 500
noise rate (%) 20 40 60 20 40 20 40 60 20 40 unknown

GDumb + L2R [57] 64.8 55.5 37.8 71.2 66.8 23.2 22.1 19.3 28.4 24.8 -
GDumb + Pencil [72] 59.3 48.1 36.4 76.4 66.6 25.6 17.9 13.9 27.6 26.8 21.1
GDumb + SL [68] 61.5 41.3 31.1 66.8 56.8 20.7 19.8 18.8 29.2 26.4 26.4
GDumb + JoCoR [69] 66.8 60.9 33.0 74.4 66.3 23.8 18.9 14.2 26.2 26.2 23.0
SPR 82.6 85.4 81.2 77.0 81.6 41.2 41.2 37.8 42.8 41.3 39.4

Table 9. Overall accuracy on the half buffer size after all sequences of tasks are trained. The buffer size is set to 150, 250, 500 for
MNIST, CIFAR-10, and WebVision, respectively. We report all of GDumb [54] combinations. An empty slot on WebVision are due to the
unavailability of clean samples required by L2R for training [57].

MNIST CIFAR-10 WebVision
symmetric asymmetric symmetric asymmetric real noise

Buffer size 600 600 1000 1000 2000
noise rate (%) 20 40 60 20 40 20 40 60 20 40 unknown

GDumb + L2R [57] 76.7 62.6 51.9 79.7 73.3 31.4 27.3 24.0 35.0 36.0 -
GDumb + Pencil [72] 72.1 58.5 39.4 75.3 73.5 31.2 24.5 16.4 38.6 35.5 33.0
GDumb + SL [68] 66.0 47.2 31.7 79.0 74.8 33.1 23.2 17.7 40.4 37.3 38.5
GDumb + JoCoR [69] 74.3 57.8 42.5 78.3 76.0 31.9 22.8 17.4 42.5 38.1 27.0

Buffer size 300 300 500 500 1000
SPR 85.4 86.7 84.8 86.8 86.0 43.9 43.0 40.0 44.5 43.9 40.0

Table 10. Overall accuracy on the double buffer size for all of GDumb combinations after all sequences of tasks are trained. The
buffer size is set to 600, 1000, 2000 for MNIST, CIFAR-10, and WebVision, respectively. An empty slot on WebVision are due to the
unavailability of clean samples required by L2R for training [57]. Note that SPR outperforms all of GDumb [54] combinations with the
buffer size of 300, 500, 1000 for MNIST, CIFAR-10, and WebVision, respectively.

T1 T2 T3 T4 T5

Task Progression

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(a) MNIST Symmetric Noise rate 40%

SPR
CRS+L2R
MIR+L2R

T1 T2 T3 T4 T5

Task Progression

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
cc

ur
ac

y

(b) CIFAR-10 Symmetric Noise rate 40%

SPR
CRS+L2R
Gdumb+L2R

T1 T2 T3 T4 T5 T6 T7

Task Progression

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
cc

ur
ac

y

(c) WebVision

SPR
Gdumb+None
Gdumb+SL

Figure 4. Accuracy and variances of top-3 best-performing meth-
ods for MNIST, CIFAR-10 and WebVision.

Figure 5. 50 random samples of the “Spiral” class from the training set.

Figure 6. 50 random training samples of the “Spiral” class from the purified buffer.

Figure 7. 50 random samples of the “Cinema” class from the training set.

Figure 8. 50 random training samples of the “Cinema” class from the purified buffer.

Figure 9. 50 samples of the “Frog” class from the training set.

Figure 10. 50 training samples of the “Frog” class from the purified buffer.

Figure 11. 50 samples of the “ATM” class from the training set

Figure 12. 50 random training samples of the “ATM” class from the purified buffer.

References
[1] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, L.

Charlin, and T. Tuytelaars. Online continual learning with
maximally interfered retrieval. In NeurIPS, 2019. 2

[2] R. Aljundi, R. Marcus, and T. Tuytelaars. Selfless sequential
learning. In ICLR, 2019. 1

[3] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K.
McGuinness. Unsupervised label noise modeling and loss
correction. In ICML, 2019. 2

[4] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio,
M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Ben-
gio, and S. Lacoste-Julien. A closer look at memorization in
deep networks. In ICML, 2017. 2

[5] R. Caruaca. Multitask learning. Machine Learning, 28:41–
75, 1997. 3, 7

[6] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny.
Efficient lifelong learning with a-gem. In ICLR, 2019. 2

[7] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan,
P. K. Dokania, P. H. Torr, and M. Ranzato. On tiny
episodic memories in continual learning. arXiv preprint
arXiv:1902.10486v4, 2019. 2

[8] P. Chen, B. Liao, G. Chen, and S. Zhang. Understanding and
utilizing deep neural networks trained with noisy labels. In
ICML, 2019. 2, 3, 4, 5

[9] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple
framework for contrastive learning of visual representations.
In ICML, 2020. 2, 3

[10] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby. Self-
supervised gans via auxiliary rotation loss. In CVPR, 2019.
2

[11] C. d’Autume, S. Ruder, L. Kong, and D. Yogatama. Episodic
memory in lifelong language learning. In NeurIPS, 2019. 2

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Jour-
nal of the Royal Statistical Society, 1:1–38, 1991. 1

[13] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-
sual representation learning by context prediction. In ICCV,
2016. 2

[14] Enrico Fini, Stphane Lathuilire, Enver Sangineto, Moin
Nabi, and Elisa Ricci. Online continual learning under ex-
tremem memory constraints. In ECCV, 2020. 1

[15] Y. Ge, D. Chen, and H. Li. Mutual mean-teaching: Pseudo
label refinery for unsupervised domain adaptation on person
re-identification. In ICLR, 2020. 2

[16] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised rep-
resentation learning by predicting image rotations. In ICLR,
2018. 2

[17] J. Goldberger and E. Ben-Reuven. Training deep neural-
networks using a noise adaptation layer. In ICLR, 2017. 2

[18] G. Gupta, K. Yadav, and L. Paull. La-maml: Look-ahead
meta learning for continual learning. In NeurIPS, 2020. 2

[19] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In NeurIPS, 2018. 2

[20] J. Han, P. Luo, and X. Wang. Deep self-learning from noisy
labels. In ICCV, 2019. 2

[21] H. Harutyunyan, K. Reing, G. V. Steeg, and A. Galstyan.
Improving generalization by controlling label-noise informa-
tion in neural network weights. In ICML, 2020. 2

[22] Tyler L Hayes, Nathan D Cahill, and Christopher Kanan.
Memory efficient experience replay for streaming learning.
In 2019 International Conference on Robotics and Automa-
tion (ICRA), 2019. 2

[23] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum
contrast for unsupervised visual representation learning. In
CVPR, 2020. 2

[24] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel. Us-
ing trusted data to train deep networks on labels corrupted by
severe noise. In NIPS, 2018. 2

[25] J. Huang, L. Qu, R. Jia, and B. Zhao. O2u-net: A simple
noisy label detection approach for deep neural networks. In
ICCV, 2019. 2

[26] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton.
Adaptive mixtures of local experts. Neural Comput, 3:79–
87, 1991. 1

[27] K. Javed and M. White. Meta-learning representations for
continual learning. In NeurIPS, 2019. 2

[28] L. Jiang, D. Huang, M. Liu, and W. Yang. Beyond synthetic
noise: Deep learning on controlled noisy labels. In ICML,
2020. 2

[29] L. jiang, Z. Zhou, T. Leung, L. Li, and L. Fei-Fei. Men-
tornet:learning data-driven curriculum for very deep neural
networks on corrupted labels. In ICML, 2018. 2

[30] D. Kim, J. Jeong, and G. Kim. Imbalanced continual learning
with partioning reservoir sampling. In ECCV, 2020. 2, 3, 6,
7

[31] D. Kingma and J. Ba. Adam: A Method for Stochastic Opti-
mization. In ICLR, 2015. 3

[32] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-
jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A.
Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran,
and R. Hadsell. Overcoming catastrophic forgetting in neu-
ral networks. In Proceedings of the National Academy of
Sciences, 2017. 1

[33] J. Kremer, F. Sha, and C. Igel. Robust active label correction.
In AISTATS, 2018. 2

[34] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Technical report, Computer Sci-
ence Department, University of Toronto, 2009. 2, 5

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient
based learning applied to document recognition. In IEEE,
1998. 2

[36] S. Lee, J. Ha, D. Zhang, and G. Kim. A neural dirichlet
process mixture model for task-free continual learning. In
ICLR, 2020. 1, 5

[37] J. Li, Y. Wong, Q. Zhao, and M. Kankanhalli. Learning to
learn from noisy labeled data. In CVPR, 2019. 2

[38] J. Li, C. Xiong, and S. Hoi. Mopro: Webly supervised learn-
ing with momentum prototypes. In ICLR, 2021. 2

[39] J. Li, P. Zhou, C. Xiong, R. Socher, and S. C. H. Hoi. Proto-
typical contrastive learning of unsupervised representations.
In ICLR, 2020. 2

[40] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and
Luc Van Gool. Webvision database: Visual learning
and understanding from web data. arXiv preprint arXiv:
1708.02862, 2017. 2

[41] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L. Li. Learning
from noisy labels with distillation. In ICCV, 2017. 2

[42] Z. Li and D. Hoiem. Learning without forgetting. In ECCV,
2016. 1

[43] D. Lopez-Paz and M. Ranzato. Gradient episodic memory
for continual learning. In NeurIPS, 2017. 2

[44] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient de-
scent with warm restarts. In ICLR, 2017. 3

[45] M. Lukasik, S. Bhojanapalli, A. K. Menon, and S. Kumar.
Does label smoothing mitigate label noise? In ICML, 2020.
2

[46] X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. M. Erfani, S.
Xia, S. Wijewickrema, and J. Bailey. Dimensionality-driven
learning with noisy labels. In ICML, 2018. 2

[47] E. Malach and S. Shalev-Shwartz. Decoupling ”when to up-
date” from ”how to update”. In NeurIPS, 2017. 2

[48] D. Mandal, S. Bharadwaj, and S. Biswas. A novel self-
supervised re-labeling approach for training with noisy la-
bels. In WACV, 2020. 2

[49] D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P.
Nguyen, L. Beggel, and T. Brox. Self: Learning to filter
noisy labels with self-ensembling. In ICLR, 2019. 2

[50] M. Noroozi and P. Favaro. Unsupervised learning of visual
representations by solving jigsaw puzzles. In ECCV, 2017.
2

[51] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.
Efros. Context encoders: Feature learning by inpainting. In
CVPR, 2016. 2

[52] G. Patrini, A. Rozza, A. Menon, R. Nock, and L. Qu. Making
deep neural networks robust to label noise: a loss correction
approach. In CVPR, 2017. 2

[53] G. Pleiss, T. Zhang, E. R. Elenberg, and K. Q. Weinberger.
Identifying mislabeled data using the area under the margin
ranking. In NIPS, 2020. 2, 3, 4, 5

[54] A. Prabhu, P. H.S. Torr, and P. K. Dokania. Gdumb: A simple
approach that questions our progress in continual learning. In
ECCV, 2019. 2, 3, 6, 7, 8

[55] Aljundi Rahaf, Min Lin, Baptiste Goujaud, and Bengio
Yoshua. Gradient based sample selection for online contin-
ual learning. In NeurIPS, 2019. 2

[56] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A.
Rabinovich. Training deep neural networks on noisy labels
with bootstrapping. In ICLR workshop, 2015. 2

[57] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to
reweight examples for robust deep learning. In ICML, 2018.
2, 3, 7, 8

[58] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and
G. Tesauro. Learning to learn without forgetting by maxi-
mizing transfer and minimizing interference. In ICLR, 2019.
2

[59] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer,
J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R.
Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016. 1

[60] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning
with deep generative replay. In NeurIPS, 2017. 2

[61] Gustavo Rodrigues Lacerda Silva, Rafael Ribeiro
De Medeiros, Brayan Rene Acevedo Jaimes, Carla Caldeira
Takahashi, Douglas Alexandre Gomes Vieira, and AntôNio
De PáDua Braga. Cuda-based parallelization of power
iteration clustering for large datasets. IEEE Access,
5:27263–27271, 2017. 3

[62] H. Song, M. Kim, and J. Lee. Selfie: Refurbishing unclean
samples for robust deep learning. In ICML, 2019. 2

[63] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa. Joint
optimization framework for learning with noisy labels. In
CVPR, 2018. 2

[64] B. Tang and D. S. Matteson. Graph-based continual learning.
In ICLR, 2021. 2

[65] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and
S. Belongie. Learning from noisy large-scale datasets with
minimal supervision. In CVPR, 2017. 2

[66] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS), 11(1):37–
57, 1985. 6, 7

[67] Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, and S.
Xia. Iterative learning with open-set noisy labels. In CVPR,
2018. 2

[68] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey. Sym-
metric cross entropy for robust learning with noisy labels. In
ICCV, 2019. 3, 7, 8

[69] H. Wei, L. Feng, X. Chen, and B. An. Combating noisy
labels by agreement: A joint training method with co-
regularization. In CVPR, 2020. 2, 3, 7, 8

[70] Y. Xu, P. Cao, Y. Kong, and Y. Wang. L dmi:
An information-theoretic noise-robust loss function. In
NeurIPS, 2019. 2

[71] M. Ye, X. Zhang, P. C. Yuen, and S. Chang. Unsupervised
embedding learning via invariant and spreading instance fea-
ture. In CVPR, 2019. 2

[72] K. Yi and J. Wu. Probabilistic end-to-end noise correction
for learning with noisy labels. In CVPR, 2019. 2, 3, 7, 8

[73] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning
with dynamically expandable networks. In ICLR, 2018. 1

[74] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama.
How does disagreement help generalization against label
corruption? In ICML, 2019. 2

[75] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo.
Cutmix: Regularization strategy to train strong classiers with
localizable features. In ICCV, 2019. 3

[76] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.
Understanding deep learning requires rethinking generaliza-
tion. In ICLR, 2017. 2

[77] Z. Zhang and M. Sabuncu. Generalized cross entropy loss
for training deep neural networks with noisy labels. In NIPS,
2018. 2

