
Deep Virtual Markers for Articulated 3D Shapes
Supplementary Material

Hyomin Kim Jungeon Kim Jaewon Kam Jaesik Park∗ Seungyong Lee∗

POSTECH

This supplement provides a detailed description of our

network architecture and detailed information on the sparse

marker annotation.

1. Network

Architecture

We adopted a U-shaped residual network to classify in-

put 3D model points into dense labels [2]. The detailed de-

scription (e.g., the numbers of convolution and deconvolu-

tion layers, kernel and stride sizes, etc.) of the network is

the same as the model named ‘Mink16UNet34C’1, except

for the voxel size that is 1cm in our case.

Training

Our network uses the multi-class cross-entropy loss

function (Eq. (2)). To minimize the loss function, we used

the stochastic gradient descent (SGD) optimizer. At each it-

eration for training, we construct a batch of size B , where

the batch consists of annotated 3D data selected from our

augmented training dataset (Sec. 3.3). In the batch, the

memory usage of each partial or full mesh is about 200MB

or 500MB, respectively. NVIDIA Titan RTX and Quadro

8000 GPU’s memory capacities are 24 and 48 GB, respec-

tively, and we set a suitable batch size by considering the

memory capacity. We perform the procedure maximally N

times unless the training meets the condition for the early

stopping.

(1) Ours-multiview. The network is trained using only

annotated partial meshes from scratch. Batch size B and

maximum iteration N are set to 60 and 60000, respectively.

(2) Ours-oneshot. For this case, we finetuned the net-

work trained for the multiview approach. We use annotated

full meshes as well as partial ones. The ratio of full meshes

to partial ones in a single batch is 9:1. B and N are set to

50 and 10000, respectively.

∗Joint corresponding authors.

1 https://github.com/chrischoy/SpatioTemporalSegmentation

𝜑𝜑
𝓏𝓏

i-th bone

Sparse virtual marker

(a)

(b) (c) (d)

Figure 1. (a) A sparse virtual marker defined in the local cylindri-

cal coordinates of a lower leg. The green arrow is the ray used to

sample the marker. (b) Bones (black) and polar axes (red) of the

local cylindrical systems. (c) Skeleton and sparse markers were

sampled on the human model’s surface. (d) Colored human mod-

els with dense virtual markers.

2. Sparse markers sampling

To obtain sparse markers, we firstly require experienced

users to pick the 3D points, which construct the bone and

polar axis of each bone’s cylindrical coordinate system

(ρ, φ, z) , as shown in Figure 1 (b). Positions of sparse mark-

ers associated with the i -th bone are specified by only two

variables (φ, z) . The sampling number of sparse markers

varies every bone because parts associated with bones have

different circumferences. The detailed information of vir-

tual marker coordinates is shown in Table 1.

We enumerate a total of 33 models and use them for

training our network. Sparse markers for respective models

are shown in Figure 2, where models are color-coded with

dense virtual markers. In Figure 3, we show augmentation

of 3D models with Mixamo motions [1] used for training.

Table 1. Coordinates of sparse markers associated with each bone. z

k denotes the coordinates normalized by a bone length, and the unit of

φk is degree. Here, ‘R’ and ‘L’ stand for right and left, respectively.

Body part name

{ φk } × { z

k }

Body part name

{ φk } × { z

k }

Head

{ 0 , 60 , 120 , 180 , 240 , 300 } × { 0 . 3 , 0 . 7 }

Upper Body

{ 0 , 45 , 90 , 135 , 180 , 225 , 270 , 315 } × { 0 . 25 , 0 . 8 }

Head_end

{ 0 } × { 0 . 0 }

Lower Body

{ 0 , 45 , 90 , 135 , 180 , 225 , 270 , 315 } × { 0 . 5 }

Neck

{ 0 , 90 , 180 , 270 } × { 0 . 6 }

Upper R_Leg

{ 90 , 210 , 330 } × { 0 . 5 }

Thorax + Upper back

{ 0 } × { 0 ., 1 . }

Lower R_Leg

{ 0 , 180 } × { 0 . 0 , 0 . 4 , 0 . 8 }

R_Shoulder

{ 0 , 90 , 270 } × { 0 . 25 }

Upper L_Leg

{− 90 , − 210 , − 330 } × { 0 . 5 }

L_Shoulder

{ 0 , 90 , 270 } × { 0 . 25 }

Lower L_Leg

{ 0 , 180 } × { 0 . 0 , 0 . 4 , 0 . 8 }

Upper R_Arm

{ 90 , 210 , 330 } × { 0 . 5 }

R_Foot

{ 0 , 90 , 180 , 270 } × { 0 . 65 }

Lower R_Arm

{ 0 , 180 } × { 0 . 0 , 0 . 35 , 0 . 7 }

R_Foot_start

{ 0 } × { 0 . 0 }

Lower R_Arm_end

{ 0 } × { 0 . 0 }

R_Foot_end

{ 0 } × { 0 . 0 }

Upper L_Arm

{− 90 , − 210 , − 330 } × { 0 . 5 }

L_Foot

{ 0 , 90 , 180 , 270 } × { 0 . 65 }

Lower L_Arm

{ 0 , 180 } × { 0 . 0 , 0 . 35 , 0 . 7 }

L_Foot_start

{ 0 } × { 0 . 0 }

Lower L_Arm_end

{ 0 } × { 0 . 0 }

L_Foot_end

{ 0 } × { 0 . 0 }

References

[1] Mixamo-3d animation online services, 3d characters, and

character rigging. https://www.mixamo.com/ . 1, 4

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese.

4d spatio-temporal convnets: Minkowski convolutional neu-

ral networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition , pages 3075–3084,

2019. 1

Figure 2. Total 33 human models (T-pose) in our training dataset. Respective models are color-coded using the ground truth soft labels, and

sparse virtual markers (black dots) are placed on the models.

Figure 3. Various poses of 3D mesh models in the training set. Each model takes a pose captured when the model is animated with a

Mixamo motion [1].

