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In this supplementary material, we present a detailed
derivation of an output in Eq. (9) of our main paper, and an
overall quantization process of DAQ in Sec. 1 and 2, respec-
tively. We also provide more analysis on DAQ including the
design and experimental results on the super-resolution (SR)
task in Sec. 3 and 4, respectively.

1. Derivation of output in Eq. (9)

The output in Eq. (9) is obtained by plugging the adap-
tive temperature β∗ into the soft assignment function φ in
Eq. (5) of the main paper. The soft assignment is defined as
a weighted average using two nearest quantized values, qf
and qc, and corresponding distance probabilities mx as fol-
lows (See Eqs. (5-6) in the main paper):

φ(x;β = β∗) = mx(qf ;β = β∗)qf +mx(qc;β = β∗)qc

=
qf exp(β

∗sx(qf )) + qc exp(β
∗sx(qc))

exp(β∗sx(qf )) + exp(β∗sx(qc))

=
qf exp(β

∗(sx(qf )− sx(qc))) + qc
exp(β∗(sx(qf )− sx(qc))) + 1

.

(1)
We define the adaptive temperature β∗ as follows:

β∗ =
γ

|sx(qf )− sx(qc)|
, (2)

which can be expressed as:

β∗ =


γ

sx(qf )− sx(qc)
, x ≤ qt

−γ
sx(qf )− sx(qc)

, x > qt,
(3)

since the weighted score of qf is larger than that of qc,
i.e., sx(qf ) > sx(qc), when the normalized input x is less
than the transition point qt, defined as (qf + qc)/2, and vice
versa. Plugging the adaptive temperature β∗ in Eq. (3) into
the soft assignment φ in Eq. (1), we obtain the following
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results:

φ(x;β = β∗) =


qf exp(γ) + qc
exp(γ) + 1

, x ≤ qt
qf exp(−γ) + qc
exp(−γ) + 1

, x > qt

=


qf exp(γ) + qc
exp(γ) + 1

, x ≤ qt
qc exp(γ) + qf
exp(γ) + 1

, x > qt

=

{
(qf exp(γ) + qc)λ, x ≤ qt
(qc exp(γ) + qf )λ, x > qt,

(4)

where λ = 1/(exp(γ) + 1) as stated in Sec. 3.3 of the main
paper. We then reformulate this equation as follows:

φ(x;β = β∗) =

{
(qf exp(γ) + qf − qf + qc)λ, x ≤ qt
(qc exp(γ) + qc − qc + qf )λ, x > qt

=

{
(qf (exp(γ) + 1) + (qc − qf ))λ, x ≤ qt
(qc(exp(γ) + 1)− (qc − qf ))λ, x > qt

=

{
(qf (1/λ) + (qc − qf ))λ, x ≤ qt
(qc(1/λ)− (qc − qf ))λ, x > qt

=

{
qf + (qc − qf )λ, x ≤ qt
qc − (qc − qf )λ, x > qt.

(5)
Note that qc−qf = 1, since qf and qc are obtained by apply-
ing floor and ceil functions, respectively, to the normalized
input x. Using this fact,

φ(x;β = β∗) =

{
qf + λ, x ≤ qt
qc − λ, x > qt,

(6)

which corresponds to Eq. (9) in the main paper.

2. Overall Process of DAQ
We show in Algorithm. 1 an overall quantization process

of DAQ.
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Algorithm 1 The distance-aware quantizer (DAQ)
1: Input:
x̂: an element of either full-precision weights or activations.

2: Output:
Q(x̂): a quantized value with a b-bit precision.

3: Parameters:
γ: a positive constant, l: a lower bound, u: an upper bound.

4: Training:
5: Clip and normalize the input x̂:
x = (2b − 1){clip(x̂,min = l,max = u)− l}/(u− l).

6: Find the two nearest quantized values, qf and qc:
qf = floor(x), qc = ceil(x).

7: Compute distance scores and adjust the temperature β∗:
dx(qi) = exp(−|x− qi|), i ∈ {f, c}
β∗ = γ/|sx(qf )− sx(qc)|,
where sx(q) is a weighted score, defined as kx(q)dx(q).

8: Compute distance probabilities mx for quantized values, qf
and qc, with an adaptive temperature β∗:
mx(qi;β = β∗) = exp(β∗sx(qi))∑

j∈{f,c} exp(β∗sx(qj))
, i ∈ {f, c}

9: Compute the assignment using the continuous assignment func-
tion φ(x;β = β∗) with the corresponding temperature β∗:
φ(x;β = β∗) =

∑
i∈{f,c}mx(qi;β = β∗)qi.

10: Rescale the assignment φ(x;β = β∗) using the following
function:
f(y) = (y − qt)/(1− 2λ) + qt,
where λ = 1/(eγ + 1) and qt = (qf + qc)/2.

11: Set Q(x̂) = f(φ(x;β = β∗)).
12: Inference:
13: Clip and normalize the input x̂:

x = (2b − 1){clip(x̂,min = l,max = u)− l}/(u− l).
14: Find the nearest quantized value using a rounding function:

Q(x̂) = round(x).

3. Design of DAQ
We design functions in DAQ for distance scores and

kernels satisfying the following conditions. The distance
score dx increases as the input x approaches the quantized
value q, and the kernel function kx retains values nearby its
center. Under these conditions, we can use other functions
for distance scores and kernels. To test this, we apply vari-
ants of them to our quantizer, where the parameters of γ
and standard deviation of the kernel are fixed to the values
chosen from the original functions. Specifically, we quantize
ResNet-20 in an 1/1-bit setting, and test the model on the
test split of CIFAR-10. 1) For the distance score, we use two
variants, dv1x and dv2x , as follows:

dv1x (q) = 1− |x− q|, dv2x (q) =
1

1 + |x− q|
. (7)

With these functions but using the kernel as our original
Gaussian one, our quantizer achieves top-1 accuracies of
84.4 and 84.2, respectively. 2) For the kernel, we replace
the Gaussian kernel with the Laplacian one while fixing
the distance score as our original one in Eq. (4) of the

main paper, achieving the top-1 accuracy of 83.7. These
results suggest that switching the distance or kernel functions
provides comparable results with the original one (85.8),
even without tuning hyperparameters.

4. Experiments on the SR Task
We apply our method to the SR task on the Set5 [1]

dataset. We quantize weights and activations for FSR-
CNN [3] in 3/3, 4/4, and 8/8-bit settings, achiving the aver-
age peak signal to noise ratio (PSNR) of 35.99dB, 36.56dB,
and 37.18dB, respectively, with the scale factor of 2, where
the full-precision model shows the PSNR of 37.05dB. We
can see the experimental results from the SR task show trends
similar to those for the classification task in that the high-bit
quantized model (i.e., 8/8-bit setting) provides a better result
than the full-precision one. This suggests that DAQ could be
effective in the regression task as well. Note that most quan-
tization methods [2, 4, 5, 6, 7, 8] show their effectivenesses
only to the classification task, making it difficult to compare
them directly with ours on the SR task.
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