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1. Observations

We show the observation about the global and local
logits and their relationships through the toy experiments
shown in Figure 1 and 2 as suggested. The teacher and stu-
dent are ResNet110 and ResNet20 [6], respectively. More
detailed training settings are identical to Section 3.1.

Figure 1 shows the activation maps of the student with
an image in CIFAR-100 [9] validation dataset where the
distillation is performed on CIFAR-100 training dataset in
three cases: (a) and (b) are trained with KL divergence for
only global and local logits, respectively; (c) is trained with
the relation distillation loss among the global and local log-
its. As shown in Figure 1, (a) only captures the global area
around the wheel without the upper part of the vehicle sep-
arating the car and the truck. (b) captures the wheel and
the upper part of the vehicle representing the truck, but also
captures the top of the image, not related to the truck. (c)
captures a broader coverage including the wheel and body
regions together through their spatial relationship. There-
fore, we use all of them to complement each other’s short-
comings and fuse the strengths of each case for knowledge.

Figure 2 shows the class prediction of an image in
CIFAR-100 validation dataset. We compare the class pre-
dictions of the network without distillation (baseline) and
with our method using 4(2 x 2) local logits. The re-
sults of the class predictions show that ours has a higher
chance to get more accurate local logits than the baseline
as the bottom-right part is close to the turtle and the top-
right/bottom-left part is closer to the shark due to the sharp
object. Since our method transfers the spatial class informa-
tion by the global and local logits and their relationships, it
can be viewed that the distilled network with our method
has an object localization ability even with only the classifi-
cation task without object detection or segmentation tasks.

*The work was done when Youmin Kim was at Kyung Hee University
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Figure 1. Activation map from the last feature of the student
network after each distillation case. The map is computed
by the max-pooling per each spatial position along with the
channel-axis.
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Figure 2. Class prediction by each local logit w.r.t a seg-
mented part on a test sample of CIFAR-100 [9]. True label
of the sample is Turtle.

2. Components and Computation Complexity

In this section, we verify the performance of each com-
ponent of our method separately. The settings for teacher
and student are the cases (a), (b) and (d) in Table 1 in the
main paper. The training settings are identical to Section
3.1. Figure 3 shows the results, where the cases (a) and (b)
show that the local logits play the most important role in
increasing the performance. In case of (d), the combination
of the global and local logits results in the highest perfor-
mance among all the components. In addition, it shows that
the combination of all the components (GLD) results in the
highest performance. Through the results from the three
cases, we verify the effectiveness of the local logits in our
proposed method.

The computational complexity of our method is
O(B2(L+1)) where L and B are the number of local logits
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Figure 3. Top-1 accuracy (%) on CIFAR-100 [9] of each
individual component. The results show that the local log-
its mostly contribute to the performance improvement, but
the other components also have complementary information
that can further improve.

and samples in a mini-batch, respectively. The relation- and
non-relation-based distillation methods have O(B2) and
O(B), respectively.

3. Implementation details

In this section, we explain the training settings more
specifically for the image classification, object detection
and semantic segmentation tasks in the main paper. In
CIFAR-100 [9], the settings for the teacher and student net-
works are identical to Table 1 in the main paper. In Ima-
geNet [2] and the fine-grained datasets [12, 8, 7, 14], we
choose ResNet34 and ResNet18 [6] as the teacher and stu-
dent networks, respectively. In addition, the ResNet34 and
ResNet18 are used as backbone networks for the object de-
tection and semantic segmentation tasks.

3.1. Image Classification on Benchmark and Fine-
grained Datasets

In the image classification experiments, we specify the
training settings for the benckmark datasets (CIFAR-100 [9]
and ImageNet [2]) and fine-grained datasets (Oxford 102
Flowers [12], Cars 196 [8], Standard Dogs [7] and CUB-
200-2011 [14]).

CIFAR-100 is a 32 × 32 size RGB image dataset and
consists of 100 classes. Each class has 500 training images
and 100 test images. The training settings for the teacher
and knowledge distillation experiments are as follows. We
train all the networks for 200 epochs, with the batch size
of 64. We use the SGD optimizer with the momentum of
0.9 and the weight decay of 0.0005. The learning rate starts
from 0.1 and is decayed by a factor of 0.1 after each 100 and
150 epochs. ImageNet consists of 1.2 million RGB images
for training and 50 thousand images for validation. Since
the images in ImageNet have various sizes, both the training
and validation images are cropped to 224×224 size. For the
comparison with other state-of-the-art distillation methods,
we follow the training settings suggested in [13].

In the fine-grained datasets, we fine-tune the teacher net-
work which was pre-trained on the ImageNet dataset for
each fine-grained dataset. In the distillation, the student net-
work is trained with He initialization [5]. In the Oxford 102
Flowers and Cars 196, all weights in the teacher network are
fine-tuned, while only the classifier in the teacher network
is fine-tuned in the Stanford Dogs and CUB-200-2011. The
training settings are as follows. We train all the networks
for 200 epochs, with the batch size of 64. We use the SGD
optimizer with the momentum of 0.9 and the weight decay
of 0.0005. In the distillation, the learning rate starts from
0.05, and in the fine-tuning, it starts from 0.001, and is de-
cayed by a factor of 0.1 after each 60, 120 and 180 epochs.
The α and β for the fine-grained datasets are identical to the
setting of CIFAR-100 experiment in the main paper.

3.2. Object Detection and Sementic Segmentation

In the object detection experiments, we use Single Shot
Detector (SSD) [11] as the detector with the size of input
image as 300×300. We train the detector with the backbone
for 250 epochs, with the batch size of 32. We use the SGD
optimizer with the momentum of 0.9 and the weight decay
of 0.0005. The learning rate warms up from 0 to 0.001 until
2 epochs and is decayed by a factor of 0.1 after each 150 and
200 epochs. We set the non-maximum suppression overlap
and the confidence threshold values used in [11] as 0.45 and
0.01, respectively.

In the semantic segmentation experiments, we use
DeepLabV3+[1] as the segmentation network with the size
of input image as 513 × 513. We train the network with
the backbone for 50 epochs in the PASCAL VOC2012 [3]
and Semantic Boundaries dataset (SBD) [4], and 40 epochs



in the COCO2017 segmentation [10] dataset. We use the
batch size of 16 and the SGD optimizer with the momentum
of 0.9 and the weight decay of 0.0005. The initial learning
rate is 0.007 in the PASCAL VOC2012 and SBD, and 0.001
in COCO2017 segmentation dataset. We use the learning
rate scheduler as the poly learning rate used in [15]. The
power value in [15] is 0.9 in the PASCAL VOC2012, SBD
and COCO2017 segmentation datasets.
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