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In the main paper, we used the joint visibility only at
interacting hands since constructing the ground-truth visi-
bility can be challenging for single-hands. Section 1 shows
that when available, the joint visibility can lead to a perfor-
mance gain for single-hands. In all experiments in the main
paper, we fixed the bounding box intersection over union
(IOU) threshold τ at 0.3 (for training) and 0.5 (for testing).
Here, we present the effect of varying τ values (Sec. 2).

In the main paper, we demonstrated that enforcing struc-
tural consistency of the estimated interacting hand poses via
the joint pose discriminator meaningfully improves the per-
formance. Here, we further support this finding via a statis-
tical significance test (Sec. 3).

The rest of this document presents the details of gener-
ating ground-truths for the visibility estimator (Sec. 4) and
the network architectures (Sec. 5), and additional hand pose
estimation examples (Sec. 6).

1. Additional experiments on Ego3D
In the main paper, we used the joint visibility maps

only for interacting hands as building the visibility ground-
truth is challenging for single-hands: See Sec. 4 for de-
tails of ground-truth construction. As Ego3D is synthetic,
such joint visibility is available for both single-hand and
interacting-hand cases. Exploiting this information im-
proves the error rates from 11.63mm to 11.44mm for single
hand cases: Table 1 shows the complete results.

2. Effect of varying τ values at training
Our system classifies each input instance into two cate-

gories 1) interacting and 2) non-interacting hands, based on
the IOU of the corresponding hand bounding boxes. For in-
teracting hands, the pose estimators are jointly trained and
tested, while for non-interacting hands, single-hand pose es-
timators are individually applied similarly to existing hand
pose estimation approaches. Determining the IOU thresh-
old τ value is crucial: In training, τ controls the size of the
training set for the joint pose estimator: Large τ values lead
to small training sets focusing on challenging closely inter-
acting cases while small τ values offer large training sets,

Table 1: Performances (MPJPE in mm) of alternative de-
sign choices of our algorithm on Ego3D. ‘Ours (−LD)’
removes the contribution of the GAN discriminator LD,
‘Ours (−LV, LD)’ further removes the joint visibility es-
timation and visibility-guided heatmap enhancement net-
works, ‘Ours (−Interaction, LD)’ completely removes the
joint training of instances that belong to interacting hands,
and in ‘Ours (−end-to-end detection and estimation)’ the
hand detector is trained and is frozen before the subsequent
pose estimation step.

Method MPJPE

Entire dataset

Ours (−Interaction, LD) 11.45 (9.75)
Ours (−LV, LD) 11.45 (9.75)
Ours (−LD) 11.44 (9.75)
Ours (Separate detection) 12.30 (10.48)
Ours 11.44 (9.74)

Only ‘interacting hands’ cases

Ours (−Interacting class, LD) 18.05 (15.86)
Ours (−LV, LD) 17.85 (15.45)
Ours (−LD) 17.46 (15.03)
Ours (Separate detection) 18.98 (16.46)
Ours 17.28 (14.82)

but they might include loosely interacting (easy) cases. Fig-
ure 1 shows the effect of varying τ values (on the ‘interact-
ing hands’ cases of InterHand2.6M dataset). The best trade-
off was achieved at 0.3 which is the same as the τ value that
we used in the main paper (optimized via cross-validation
on training sets).

For testing, for high τ values, our joint pose estimator
focuses on limited cases of very closely interacting hands,
leaving most other cases to the single-hand pose estimator.
The overall performance degraded, as in this case mildly
interacting cases did not benefit from joint estimation. On
the other hand, when τ is too small, our joint estimator is
applied to cases which differ significantly from what it has
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Figure 1: Error rates (MPJPE; in mm) of our system on In-
terHand2.6M under varying τ values at training (red) and
testing (blue).

been trained for, again degrading the performance. The best
tradeoff was achieved at τ = 0.5 which we use for other
datasets as well.

Figure 4 shows example hand classifications with respect
to varying τ values.

3. Contribution of the hand pose discriminator

While training our hand pose estimator jointly on inter-
acting hands helps exploit their underlying statistical depen-
dence, it sometimes generates physically implausible con-
figurations (Fig. 3 in the main paper). We account for this
by enhancing structural consistency of the estimated joint
hand pose using a GAN-type pose discriminator. This net-
work sees the estimated skeletons of interacting hands and
provides feedback to our 2D heatmap estimator and depth
value estimator. Section 4 in the main paper demonstrates
that this additional supervision helps improve the perfor-
mance of our system quantitatively and qualitatively (Ta-
ble 2 and Fig. 3, respectively, main paper). Here, we further
support these findings via statistical significance tests: The
InterHand2.6M dataset provides an experimental split of
528,000 training and 122,000 testing frames. Among these
frames, 284,728 training and 66,734 test frames are pro-
vided with the ground-truth skeleton annotations that we
used in the experiments of the main paper. We performed
additional experiments with 10 different training and test-
ing splits of the same sizes (284,728 and 66,734 frames,
respectively). Table 2 shows the results: Ours (−LD) repre-
sents a variation of our system constructed by removing the
discriminator loss LD in the final training loss of our system
(Eq. 5 of the main paper):

(a) original image (b) depth image (c) visibility

Figure 2: Visibility (pseudo) ground-truth examples: (a) in-
put images; (b) depth maps rendered from the hand meshes
fitting to the images in (a); (c) generated ground-truths: left
and right hands are marked in green and red, respectively
while all occluded joints are highlighted in yellow.

L = LHPN(fHPN, fFeat) + LHand(fCB, fFeat)

+ L2D(fH2D, fTVHE) + λ1L
3D(fZ3D)

+ λ2L
D(fTH2D, fTZ3D, fTVHE) + λ3L

V(fTJVE), (1)

For each training and testing split, we measured the average
error rates on (a) a subset of the test set consisting of only
interacting hands and (b) the entire test set: As our discrim-
inator takes effect only on interacting hands, only those test
instances in set (a) benefit from this additional supervision.
Our final system measured the average error rate reduction
of 4.26% and 1.14% on (a) and (b), respectively. We per-
formed a t-test with 5% significance level of null hypothe-
sis (the difference is insignificant): For both (a) and (b), our
pose discriminator contributes to significantly improve the
performance.

4. Generating (pseudo) visibility ground-truth
To train the joint visibility estimation network fTJVE,

we generated (pseudo) visibility ground-truths: For each in-
put image, hand meshes were first synthesized by fitting
MANO models where the parameters are estimated using
NeuralAnnot [1]. Then, a depth image was generated by
rendering these hand meshes. Next, the visibility of each
joint was determined based on the difference between the
ground-truth depth value of that joint and the correspond-
ing value of the rendered depth map. If the rendered depth
value is larger than the ground-truth depth by a certain mar-
gin, we concluded that the corresponding joint is occluded.
The margins values were empirically determined at 5mm
and 2mm for wrist and the other skeletal joints, respectively.
Figure 2 shows examples of the generated ground-truth joint
visibility maps while Fig. 3 visualizes the resulting 2D hand
heatmap estimation pipeline.
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Table 2: Error rates (MPJPE; in mm) of our system trained with (Ours [Final]) and without (Ours [−LD]) the supervision LD

from the joint hand pose discriminator on ten different training and testing splits of InterHand2.6M: (a) results on a subset
consisting of only interacting hands and (b) results on the entire dataset.

Split 1 2 3 4 5 6 7 8 9 10 Avg.

(a) Ours (−LD) 12.17 12.49 12.27 12.24 12.09 12.31 12.07 12.04 12.28 12.25 12.22

Ours (Final) 11.75 12.02 11.76 11.72 11.43 11.85 11.61 11.48 11.78 11.65 11.70

(b) Ours (−LD) 11.35 11.53 11.45 11.34 11.22 11.50 11.18 11.23 11.44 11.34 11.36

Ours (Final) 11.25 11.41 11.33 11.21 11.06 11.39 11.07 11.10 11.32 11.19 11.23

x

f TH2D

f TVHE

f TJVE

f FP

Figure 3: An illustration of the proposed 2D hand heatmap
estimation pipeline.

5. Network architectures

Tables 3–10 present the details of our network architec-
tures.

6. Additional examples

Figure 5 demonstrates that estimating and exploiting the
joint visibility helps improve the joint estimation accuracy.
Figures 6–10 show example images and the corresponding
hand pose estimation results of Moon et al.’s algorithm [2]
(using their code) and ours on single-hand as well as in-
teracting hands cases. Both Moon et al.’s approach and our
algorithm generated accurate pose estimates for single-hand
cases. However, for interacting hands, severe occlusions and
interference can pose significant challenges even for state-
of-the-art Moon et al.’s approach (fourth to sixth rows in
Fig. 7 and second and third rows in Fig. 9, and first and
forth rows in Fig. 10). By exploiting the dependence of in-
teracting hands, our approach can provide higher quality es-
timates.
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Figure 4: Example classification of training images under varying IOU thresholds τ : (Left 4 columns) single hands whose
IOU is τ − ϵ; (Right 4 columns) interacting hands whose IOU is τ + ϵ where ϵ ≈ 0.05.
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(a) (b) (c) (d)

Figure 5: Hand pose estimation examples on InterHand2.6M (Rows 1-2), Ego3D (Rows 3-4) and Tzionas (Row 5): (a)
input images; (b) results of our algorithm without using the visibility-guided heatmap enhancement network; (c) final results
of our algorithm including visibility-guided heatmap enhancement: The yellow points highlight occluded joints. Explicitly
estimating and exploiting the joint visibility helps improve the joint estimation accuracy (rows 2-5); (d) ground-truths.
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(a) Moon et al. [2] (b) Ours (c) Ground-truths

Figure 6: Hand pose estimation examples on Ego3D (single-hand cases).
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(a) Moon et al. [2] (b) Ours (c) Ground-truths

Figure 7: Hand pose estimation examples on Ego3D (interacting hands cases).
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(a) Moon et al. [2] (b) Ours (c) Ground-truths

Figure 8: Hand pose estimation examples on InterHand2.6M (single-hand cases).
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(a) Moon et al. [2] (b) Ours (c) Ground-truths

Figure 9: Hand pose estimation examples on InterHand2.6M (interacting hands cases).
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(a) Moon et al. [2] (b) Ours (c) Ground-truths

Figure 10: Hand pose estimation examples on Tzionas.
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Table 3: Architecture of single-hand 2D heatmap estimation
network fSH2D

Layer Operation Kernel Dimensionality

Input: ROI pooled features - 28× 28× 256

1 Conv. + ReLU 3× 3 28× 28× 512
2 Conv. + ReLU 3× 3 28× 28× 512
3 Conv. + ReLU 3× 3 28× 28× 512
4 Conv. + ReLU 3× 3 28× 28× 512
5 Conv. + ReLU 3× 3 28× 28× 512
6 Conv. + ReLU 3× 3 28× 28× 512
7 Conv. + ReLU 3× 3 28× 28× 512
8 Conv. + ReLU 3× 3 28× 28× 512
9 Conv. + ReLU 3× 3 28× 28× 21

Table 4: Architecture of interacting hand 2D heatmap esti-
mation network fTH2D

Layer Operation Kernel Dimensionality

Input: ROI pooled features - 28× 28× 256

1 Conv. + ReLU 3× 3 28× 28× 768
2 Conv. + ReLU 3× 3 28× 28× 768
3 Conv. + ReLU 3× 3 28× 28× 768
4 Conv. + ReLU 3× 3 28× 28× 768
5 Conv. + ReLU 3× 3 28× 28× 768
6 Conv. + ReLU 3× 3 28× 28× 768
7 Conv. + ReLU 3× 3 28× 28× 768
8 Conv. + ReLU 3× 3 28× 28× 768
9 Conv. + ReLU 3× 3 28× 28× 42

Table 5: Architecture of Joint visibility estimation network
fTJVE

Layer Operation Kernel Dimensionality

Input: Feature map - 28× 28× 256

1 Global Average pooling 28× 28 1× 1× 256
2 Flatten - 256
3 Linear + GroupNorm(16) + ReLU - 512
4 Linear - 42

6 Sigmoid - 42

Table 6: Architecture of visibility-guided heatmap enhance-
ment network fTVHE

Layer Operation Kernel Dimensionality

Input: (Feature map + heatmap) - 28× 28× 298combinations

1 Conv. + GroupNorm(16) + ReLU 3× 3 28× 28× 512
2 Conv. + GroupNorm(16) + ReLU 3× 3 28× 28× 512
3 Conv. + ReLU 3× 3 28× 28× 42

Table 7: Architecture of single-hand 3D depth value estima-
tion net fSZ3D

Layer Operation Kernel Dimensionality

Input: (Feature map + heatmap) - 28× 28× 277combinations

1 Conv. + ReLU 3× 3 14× 14× 512
2 Conv. + ReLU 3× 3 7× 7× 512
3 Flatten - 25, 088
4 Linear - 512
5 Linear - 21

6 Sigmoid - 21

Table 8: Architecture of interacting-hands 3D depth value
estimation net fTZ3D

Layer Operation Kernel Dimensionality

Input: (Feature map + 2 heatmap) - 28× 28× 298combinations

1 Conv. + ReLU 3× 3 14× 14× 512
2 Conv. + ReLU 3× 3 7× 7× 512
3 Flatten - 25, 088
4 Linear - 512
5 Linear - 42

6 Sigmoid - 42

Table 9: Architecture of interacting-hands 2D heatmap dis-
criminator dTH2D

Layer Operation Kernel Dimensionality

Input: 2D heatmaps - 56× 56× 42

1 Conv. + LeakyReLU(0.2) 4× 4 28× 28× 128
2 Conv. + LeakyReLU(0.2) 4× 4 14× 14× 256
3 Conv. + LeakyReLU(0.2) 4× 4 7× 7× 512
4 Conv. + LeakyReLU(0.2) 4× 4 3× 3× 512

5 Conv. 3× 3 1× 1× 1
6 Sigmoid

Table 10: Architecture of interacting-hands 3D pose discriminator
dTZ3D

Layer Operation Kernel Dimensionality

Input: 3D skeletal joints - 126

1 Linear + LeakyReLU(0.2) - 512
2 Linear + LeakyReLU(0.2) - 1024
3 Linear + LeakyReLU(0.2) - 2048
4 Linear + LeakyReLU(0.2) - 4096

5 Linear - 1
6 Sigmoid
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