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Supplementary Materials
Supplementary Materials contain supporting claims, deriva-
tions for formulae, and auxiliary experimental results for
the materials in the main paper. The sections are composed
sequentially with respect to the contents of the main paper.

A. Equivalence of CAM formulations
In §3 of the main paper, we have argued that the formu-

lation in Equation 1 copied below,
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(
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)
(a)

is equivalent to CNNs with an additional linear layer W ∈
RC×L after the global average pooling (e.g. ResNet):
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where f is a fully-convolutional network with output di-
mensionality f(x) ∈ RL×H×C . This follows from the dis-
tributive property of sums and multiplications:∑
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where we may re-define fyhw :=
∑
lWylf lhw as another

fully-convolutional network with a convolutional layer with
1× 1 kernels (Wyl) at the end.

For networks of the form in Equation b, the original
CAM algorithm computes the attribution map by first taking
the sum

fhw =
∑
l

Wŷlf lhw(x) (d)

and normalizing f as in Equation 2 in main paper:

s =

{
(f ŷmax)

−1 max(0, f ŷ) max [10]
(f ŷmax − f

ŷ
min)

−1(f ŷ − f ŷmin) min-max [6]
(e)

Hence, for both training and interpretation, the family of
architectures described by Equation 1 subsumes the family
originally considered in CAM [10] (Equation b).

B. Derivation of CALMEM objective
In §4.1.2, we have introduced an expectation-

maximization (EM) learning framework for our latent
variable model. We derive the EM objective in Equation 6
here. Our aim is to minimize the negative log-likelihood
− log pθ(y|x). We upper bound the objective as follows.

− log pθ(y|x) = − log
∑
z

pθ(y, z|x) (f)

= − log
∑
z

pθ′(z|x, y)
pθ(y, z|x)
pθ′(z|x, y)

(g)

≤ −
∑
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pθ′(z|x, y) log
pθ(y, z|x)
pθ′(z|x, y)

(h)

≤ −
∑
z

pθ′(z|x, y) log pθ(y, z|x) . (i)

The inequalities leading to Equation h and i follow from the
Jensen’s inequality and the positivity of the entropy, respec-
tively.

We parametrize each term with a neural network.
pθ(y, z|x) is computed via gyz · hz and pθ′(z|x, y) is first
decomposed as

pθ′(z|x, y) =
pθ′(y, z|x)∑
l pθ′(y, l|x)

(j)

and computed with neural networks

pθ′(z|x, y) =
g′yz · h′z∑
l g
′
yl · h′l

(k)

where g′ and h′ are neural networks parametrized with θ′.

C. Training details for CALM
We provide miscellaneous training details for CALM.

See §5.1 in the main paper for major training details.

Architecture. We use the ResNet50 as the feature extrac-
tor. We enlarge the attribution map size to 28×28 by chang-
ing the stride of the last two residual blocks from 2 to 1.
Two CNN branches g and h are followed by the feature ex-
tractor. The branch g is the one convolutional layer of kernel
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size 1 and stride 1 with the number of output channel to be
the number of classes. The branch h is composed of one
convolutional layer of kernel size 1 and stride 1 with the
number of output channel to be 1, followed by the ReLU
activation function.

Optimization hyperparameters. We use the stochastic
gradient descent with the momentum 0.9 and weight decay
1× 10−4. We set the learning rate as (3× 10−5, 5× 10−5,
7× 10−5) for (CUB, OpenImages, ImageNet).

D. More qualitative results
See qualitative results in Figure A for the comparison of

attributions against the ground-truth attributions using the
counterfactual maps sA−sB. As in Figure 4 of the main pa-
per, we observe that CALM attains the best similarity with
the ground-truth masks. CALM are also the most human-
understandable among the considered methods.

We add more qualitative results of the attribution maps
sA for the ground-truth class for CUB (Figure B), OpenIm-
ages (Figure C), and ImageNet (Figure D). For each case,
we do not have the GT attribution maps as in Figure A,
but we show the GT foreground object bounding boxes, or
masks if available (OpenImages). Note that the attribu-
tion maps (CALMEM and CALMML) are not designed to
highlight the full object extent, while the aggregated ver-
sions (+Y) are designed so. We observe that in all three
datasets, CALMEM +Y and CALMML +Y tend to generate
high-quality foreground masks for the object of interest; for
OpenImages, note that “+Y” does not change CALMEM and
CALMML as the supersets Y are all singletons.

E. Evaluation protocol for WSOL
In §5.4 of the main paper, we have presented exper-

imental results on WSOL benchmarks. In this section,
we present metrics, datasets, and validation protocols for
the WSOL experiments. We follow the recently proposed
WSOL evaluation protocol [1].
Metrics. After computing the attribution s, WSOL meth-
ods binarize the attribution by a threshold τ to generate a
foreground mask M = 1[sij ≥ τ ]. When there are mask
annotations in the dataset, we compute pixel-wise precision
and recall at the threshold τ . The PxAP is the area un-
der the precision and recall curve at all possible thresholds
τ ∈ [0, 1]. On the other hand, when only the box annota-
tions are available, we generate a bounding box that tightly
bound each connected component on the mask M. Then,
we calculate intersection over union (IoU) between all pairs
of ground truth boxes and predicted boxes at all thresholds
τ ∈ [0, 1]. When there is at least one pair of (ground truth,
prediction, τ ) with IoU ≥ δ, we regard the localization pre-
diction of the attribution as correct. The MaxBoxAccV2 is

the average of three ratios of correct images in the dataset
at three δ = 0.3, 0.5, 0.7.
Evaluation protocol. Every dataset in our WSOL exper-
iments consists of three disjoint splits: train, val, and
test. The val and test splits contain images with lo-
calization and class labels, while the train split contains
images only with class labels. We use the train split to
train the classifier, and tune our hyperparameter by check-
ing the localization performance on the val split. Specif-
ically, we only tune the learning rate by randomly sam-
pling 30 learning rates from the log-uniform distribution
LogUniform[5−5, 5−1]. Then, based on the performance on
val, we select the optimal learning rate. Finally, we mea-
sure the final localization performance on test split with
the selected learning rate. Since previous WSOL methods
in [1] are also evaluated under this evaluation protocol, we
can compare fairly our method with the previous methods.

F. Superset Y for ImageNet classes
In the main paper §5.4, we have discussed the disjoint

goals pursued by two tasks, visual attribution and WSOL.
The former aims to locate cues that make the class distin-
guished from the others and typically locates a small part of
the object; the latter aims to locate the foreground pixels for
objects. To bridge the two, we have considered an aggrega-
tion strategy to produce a foreground mask from attribution
maps. Our assumption is that attribution maps for differ-
ent classes for the same family sharing the identical object
structure will cover various object parts in the foreground
mask. For example, 200 bird classes in CUB share the
part structure of “head-beak-breast-wing-belly-leg-tail”, but
each class will highlight different parts. Combining the at-
tribution maps for the 200 classes will roughly cover all the
object parts, providing a higher-quality foreground mask.

For 1000 classes in ImageNet1K, we manually annotate
the corresponding supersets Y . We first build a tree of con-
cepts over the classes using the WordNet hierarchy [5]. The
leaf nodes correspond to 1000 classes, while the root node
corresponds to the concept “entity” that includes all 1000
classes. For each leaf node (ImageNet class) y, we have
annotated the superset Y by choosing an appropriate parent
node of y. The parent selection criteria is as follows:

• Choose the parent node PA(y) of y as close to the root
as possible;

• Such that Y , the set of all children of PA(y), consists
of classes with the same object structure as y.

Algorithm. We efficiently annotate the parent nodes by
traversing the tree in a breadth-first-search (BFS) manner
from the root node, “entity”. We start from the direct chil-
dren (depth= 1) of the root node. For each node of depth 1,



we mark if the concept contains classes of the same object
structure (hom or het). For example, the family of classes
under the organism parent is not yet specific enough to
contain classes of homogeneous object structures, so we
mark het. We continue traversing in depths 2, 3, and so
on. If a node at depth d is marked hom, we treat all of its
children to have the same superset Y and do not traverse
its descendants for depth> d. For example, the canine
superset of 116 ImageNet classes is reached by following
the genealogy of organism → animal → chordate
→ mammal→ placental→ carnivore→ canine.
We note that the task is fairly well-defined for humans.

Results. We find 450 supersets in ImageNet1K. 120 of
them are non-singleton, consisting of at least two ImageNet
classes. The rest 330 classes are singleton supersets. See
Table A for the list.

G. A complete version of WSOL results

See Table 5 for the complete version of Table 3 of
the main paper. We show the architecture-wise perfor-
mances for CALM, CAM, and six previous WSOL meth-
ods (HaS [4], ACoL [8], SPG [9], ADL [2], CutMix [7],
InCA [3]).

In the ImageNet1K dataset, the proposed method
achieves competitive performance (62.8%) with CAM
(62.4%) and InCA (63.1%). The supersetY aggregation im-
proves the localization performances for CALMEM (62.5%
→ 62.8%), but it decreases the CAM performances sig-
nificantly (62.4% → 60.6%). For CUB, we observe that
CALMEM does not localize the birds effectively without
the superset Y (52.5%). With the superset aggregation,
CALMEM attains 65.4%. This is expected behavior because
CALMEM attributions often highlight small discriminative
object parts (e.g. Figure 4 in the main paper). For OpenIm-
ages, CALMEM achieves the state-of-the-art performances
on all three backbone architectures (61.3%, 64.4%, 62.5%).
Since the modified OpenImages [1] consists of classes of
unique object structures, the supersets are all singletons.
The performances are thus identical with or without the ag-
gregation +Y . In summary, CALMEM on ImageNet is com-
petitive, compared to the state of the art, and is the new state
of the art on CUB and OpenImages.

H. More qualitative examples for WSOL

In Figure 6 of the main paper, we have shown the aggre-
gation of attribution maps at different depths of hierarchy
for the “canine” class. We show additional qualitative ex-
amples of the superset aggregation for other classes in Fig-
ure E. We note that the optimal depths that precisely cover
the object extents differ across classes.
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Class name WordNet ID # Classes Class name WordNet ID # Classes Class name WordNet ID # Classes

canine n02083346 116 wheel n04574999 4 power tool n03997484 2
bird n01503061 52 swine n02395003 3 farm machine n03322940 2
reptile n01661091 36 lagomorph n02323449 3 slot machine n04243941 2
insect n02159955 27 marsupial n01874434 3 free-reed instrument n03393324 2
primate n02469914 20 coelenterate n01909422 3 piano n03928116 2
ungulate n02370806 17 echinoderm n02316707 3 lock n03682487 2
aquatic vertebrate n01473806 16 person n00007846 3 breathing device n02895606 2
building n02913152 12 firearm n03343853 3 heater n03508101 2
car n02958343 10 clock n03046257 3 locomotive n03684823 2
bovid n02401031 9 portable computer n03985232 3 bicycle, n02834778 2
arachnid n01769347 9 brass n02891788 3 railcar n02959942 2
ball n02778669 9 cart n02970849 3 handcart n03484083 2
headdress n03502509 9 sailing vessel n04128837 3 warship n04552696 2
feline n02120997 8 aircraft n02686568 3 sled n04235291 2
amphibian n01627424 8 bus n02924116 3 reservoir n04078574 2
decapod crustacean n01976146 8 pot n03990474 3 jar n03593526 2
place of business n03953020 8 dish n03206908 3 basket n02801938 2
musteline mammal n02441326 7 pot n03990474 3 glass n03438257 2
fungus n12992868 7 pen n03906997 3 shaker n04183329 2
truck n04490091 7 telephone, phone n04401088 3 opener n03848348 2
bottle n02876657 7 gymnastic apparatus n03472232 3 power tool n03997484 2
seat n04161981 7 neckwear n03816005 3 pan, cooking pan n03880531 2
rodent n02329401 6 swimsuit n04371563 3 cleaning implement n03039947 2
mollusk n01940736 6 body armor n02862048 3 puzzle n04028315 2
stringed instrument n04338517 6 footwear n03381126 3 camera n02942699 2
boat n02858304 6 bridge n02898711 3 weight n04571292 2
box n02883344 6 memorial n03743902 3 cabinet n02933112 2
toiletry n04447443 6 alcohol n07884567 3 curtain n03151077 2
bag n02773037 5 dessert n07609840 3 sweater n04370048 2
stick n04317420 5 cruciferous vegetable n07713395 3 robe n04097866 2
bear n02131653 4 baby bed n02766320 3 scarf n04143897 2
woodwind n04598582 4 procyonid n02507649 2 gown n03450516 2
source of illumination n04263760 4 viverrine n02134971 2 protective garment n04015204 2
ship n04194289 4 cetacean n02062430 2 oven n03862676 2
edge tool n03265032 4 edentate n02453611 2 sheath n04187061 2
overgarment n03863923 4 elephant n02503517 2 movable barrier n03795580 2
skirt n04230808 4 prototherian n01871543 2 sheet n04188643 2
roof n04105068 4 worm n01922303 2 plaything n03964744 2
fence n03327234 4 flower n11669921 2 mountain n09359803 2
piece of cloth n03932670 4 timer n04438304 2 shore n09433442 2

Table A. List of supersets Yfine. We list 120 supersets for classes in ImageNet1K. We omit the rest 330 supersets from the list, as they only
have single elements (singletons).

ImageNet (MaxBoxAccV2) CUB (MaxBoxAccV2) OpenImages (PxAP) Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean

HaS [4] 60.6 63.7 63.4 62.6 63.7 53.4 64.6 60.6 58.1 58.1 55.9 57.4 60.2
ACoL [8] 57.4 63.7 62.3 61.1 57.4 56.2 66.4 60.0 54.3 57.2 57.3 56.3 59.1
SPG [9] 59.9 63.3 63.3 62.2 56.3 55.9 60.4 57.5 58.3 62.3 56.7 59.1 59.6
ADL [2] 59.9 61.4 63.7 61.6 66.3 58.8 58.3 61.1 58.7 56.9 55.2 56.9 59.9
CutMix [7] 59.5 63.9 63.3 62.2 62.3 57.4 62.8 60.8 58.1 62.6 57.7 59.5 60.8
InCA [3] 61.3 62.8 65.1 63.1 66.7 60.3 63.2 63.4 - - - - -
CAM [10] 60.0 63.4 63.7 62.4 63.7 56.7 63.0 61.1 58.3 63.2 58.5 60.0 61.2
CAM [10] + Y 59.4 62.1 60.4 60.6 63.6 59.1 67.4 63.4 58.3 63.2 58.5 60.0 60.1
CALMEM 62.3 62.2 63.1 62.5 54.9 42.2 60.3 52.5 61.3 64.4 62.5 62.7 59.2
CALMEM + Y 62.8 62.3 63.4 62.8 64.8 60.3 71.0 65.4 61.3 64.4 62.5 62.7 63.6

Table B. WSOL results on CUB, OpenImages, and ImageNet. Extension of Table 2 in main paper. CALMEM and CALMEM +Y are
compared against the baseline methods. CALMEM +Y denote the aggregated attribution map for classes in Y .
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Figure A. Counterfactual attribution maps on CUB. Extension of Figure 4 in main paper. We compare the counterfactual attributions
from CALM and baseline methods against the GT attribution mask. The GT mask indicates the bird parts where the attributes for the class
pair (A,B) differ. The counterfactual attributions denote the difference between the maps for classes A and B: sA − sB. Red: positive
values. Blue: negative values.



Image CALM EM
(Ours)

CALM EM +
(Ours)

CALM ML
(Ours)

CALM ML +
(Ours)

CAM Vanilla
Gradient

Variance
Gradient

Figure B. Examples of attribution maps on CUB. We show the object bounding boxes to mark the foreground regions. +Y denotes the
class aggregation.
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Figure C. Examples of attribution maps on OpenImages. We show the object bounding boxes to mark the foreground regions. We do not
show the class aggregation (+Y) because it does not change our methods (CALMEM and CALMML) on OpenImages (Y are all singletons).
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Figure D. Examples of attribution maps on ImageNet. We show the object bounding boxes to mark the foreground regions. +Y denotes
the class aggregation.
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Figure E. Examples for aggregation at different hierarchies on ImageNet. Extension of Figure 6 of main paper. We show the aggregated
attribution maps at different depths of the hierarchy and the correspondingly expanding superset Y .


