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Figure 1. Qualitative comparison of GRID dataset (s2, s4, s13,
s25) using (a) the proposed method, (b) the ground truth, and (c)
[2] in a speaker-independent training scheme.

1. Generated results of speech reconstruction
from silent video

Fig.1 shows the examples of generated mel-spectrogram
from S2, S13 (male), S4, and s25 (female) in a speaker-
independent setting. Since the network has not seen both
the facial appearance and the lip movement, the output au-
dio waveforms cannot be exactly the same. However, the
generated mel-spectrogram and the audio waveforms seem
similar to the real ones, and the actual audio sounds have
shown reasonable quality. We also provide a demo for
both speaker-dependent and speaker-independent settings
in demo dependent.mp4 and demo independent.mp4, re-
spectively. The demo firstly shows the silent input video.
Then, the ground truth video, the generated audio from the
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previous work, and the generated audio from our proposed
method are shown with the input video. The demo clearly
indicates that the generated audio samples from the pro-
posed model shows reasonable and correct sounds, while
the previous method fails to pronounce the perfectly correct
letters. We write in red on letters with the wrong sounds
in the actual transcription at the bottom of the demo video
screen. Furthermore, our generated audio samples clearly
follow the voice with the correct gender corresponding to
the input face video, while the previous work [2] often fails
(e.g., s25 in demo independent.mp4).

2. Visualization of addressing vectors for addi-
tional talking input video

We visualize the addressing vectors of both lip read-
ing model and speech reconstruction model in a speaker-
independent setting, additional to the Fig.3 in the
manuscript. Fig.2(a) shows the video clips of LRW dataset
with consecutive 5 frames and the corresponding addressing
vectors of lip reading model. From the addressing vectors
of different speakers speaking the same pronunciation, we
observe that the tendency of the addressing vectors is sim-
ilar. The same tendency can be observed in the speech re-
construction model which is shown in Fig.2(b). In addition,
we make a demo video showing changes in key-value mem-
ory addressing during training on LRW dataset. The demo
video demo address.mp4 clearly shows that the source-
key memory addressing vector well follows the target-value
memory addressing vector as epoch increases. It also indi-
cates that the tendencies of both the addressing vectors of
two similar pronouncing videos are similar to each other.

3. Network architecture
Application 1. Lip reading: The architectures of both

visual embedding module and audio embedding module are
shown on Table 1. The audio embedding module is com-
posed of two convolution layers with stride 2, one Resid-
ual block [1] with stride 1, and a fully connected layer,
which aggregates the spectral dimension and channel di-
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Figure 2. Face video clips (source modality) and corresponding addressing vectors for audio modality (target modality) from learned
representations inside memory: (a) results from lip reading and (b) results from speech reconstruction from silent video.

mension. The dimension of both embedded representa-
tions are 512 (i.e., C = D = 512). For the fusion layer
h(·), we use one linear layer, and 16 is used for r. Since
the baseline visual embedding module encodes a short-time
range (i.e., 5 frames) with one 3D convolution layer, we ex-
amine the number of memory slots using multiples of the
number of pronunciations for each language as a hint (i.e.,
44 phonemes for English and 56 pinyins for Mandarin).
We find that the doubles of the number of pronunciations
achieve the best among the variants for both languages (i.e.,
N = 88 for English, N = 112 for Mandarin).

Application 2. Speech reconstruction from silent
video: The architectures of both visual embedding mod-

ule and audio embedding module for speech reconstruction
task are shown on Table 2. We utilize the same architecture
of audio embedding module as lip reading experiment ex-
cept for additional one convolution layer with kernel size of
5 before the Residual block. The dimension of both embed-
ded representations are 512 (i.e., C = D = 512). For the
fusion layer h(·), we use one linear layer, and 16 is used for
r. Since the baseline visual embedding module encodes a
long-time range with stacked 3D convolution layers, we use
larger number of memory slot size than lip reading experi-
ment (i.e., N = 150).



Visual Embedding Module: input size T × H × W × 1
Layer Filter size / number / stride Output dimensions

Conv 3D 5 × 7 × 7 / 64 / [1, 2, 2] T × H
2 × W

2 × 64
Max Pool 3D 1 × 3 × 3 / - / [1, 2, 2] T × H

4 × W
4 × 64

ResBlock 2D
3 × 3 / 64 / [1, 1]
3 × 3 / 64 / [1, 1] T × H

4 × W
4 × 64

ResBlock 2D
3 × 3 / 64 / [1, 1]
3 × 3 / 64 / [1, 1] T × H

4 × W
4 × 64

ResBlock 2D
3 × 3 / 128 / [2, 2]
3 × 3 / 128 / [1, 1] T × H

8 × W
8 × 128

ResBlock 2D
3 × 3 / 128 / [1, 1]
3 × 3 / 128 / [1, 1] T × H

8 × W
8 × 128

ResBlock 2D
3 × 3 / 256 / [2, 2]
3 × 3 / 256 / [1, 1] T × H

16 × W
16 × 256

ResBlock 2D
3 × 3 / 256 / [1, 1]
3 × 3 / 256 / [1, 1] T × H

16 × W
16 × 256

ResBlock 2D
3 × 3 / 512 / [2, 2]
3 × 3 / 512 / [1, 1] T × H

32 × W
32 × 512

ResBlock 2D
3 × 3 / 512 / [1, 1]
3 × 3 / 512 / [1, 1] T × H

32 × W
32 × 512

Avg Pool 2D H
32 × W

32 / - / [1, 1] T × 512

Audio Embedding Module: input size M × 4T × 1
Layer Filter size / number / stride Output dimensions

Conv 2D 3 × 3 / 128 / [2, 2] M
2 × 2T × 128

Conv 2D 3 × 3 / 256 / [2, 2] M
4 × T × 256

ResBlock 2D
3 × 3 / 256 / [1, 1]
3 × 3 / 256 / [1, 1]

M
4 × T × 256

Flatten - T × M
4 * 256

Linear M
4 * 256 × 512 T × 512

Table 1. Network architecture for lip reading.

4. Ablation study on memory slot size

Application 1. Lip reading: In order to examine the
effect of the number of memory slots, we conduct an abla-
tion study with four different number of memory slots for
each dataset. The ablation results on memory slot size are
reported at Table 3. For LRW, a dataset in English, the word
accuracy is achieved the best with 85.41% when N=88. It
increases the performance from the baseline without the
proposed framework by 1.27%. For LRW-1000, a dataset in
Mandarin, the best word accuracy is 50.82% when N=112
by improving the baseline performance with 5.89%. The
proposed framework improves the performance regardless
of the number of memory slots from the baseline. More-
over, we observed that the double number of phoneme and
pinyin is the best performance for each language (i.e., 88
for English, 112 for Mandarin).

Application 2. Speech reconstruction from silent
video: Table 4 shows the ablation results on differentiat-
ing memory slot sizes (i.e., 0, 50, 150) in the speaker-
dependent setting. As the table shows, the performances
in three qualitative metrics are improved disregarding the
number of memory slots, which verifies the effectiveness of
the proposed method, and we report N = 150 for the exper-

Visual Embedding Module: input size T × H × W × 3
Layer Filter size / number / stride Output dimensions

Conv 3D 5 × 5 × 5 / 32 / [1, 2, 2] T × H
2 × W

2 × 32
Conv 3D 3 × 3 × 3 / 32 / [1, 1, 1] T × H

2 × W
2 × 32

Conv 3D 3 × 3 × 3 / 32 / [1, 1, 1] T × H
2 × W

2 × 32
Conv 3D 3 × 3 × 3 / 64 / [1, 2, 2] T × H

4 × W
4 × 64

Conv 3D 3 × 3 × 3 / 64 / [1, 1, 1] T × H
4 × W

4 × 64
Conv 3D 3 × 3 × 3 / 64 / [1, 1, 1] T × H

4 × W
4 × 64

Conv 3D 3 × 3 × 3 / 128 / [1, 2, 2] T × H
8 × W

8 × 128
Conv 3D 3 × 3 × 3 / 128 / [1, 1, 1] T × H

8 × W
8 × 128

Conv 3D 3 × 3 × 3 / 128 / [1, 1, 1] T × H
8 × W

8 × 128
Conv 3D 3 × 3 × 3 / 256 / [1, 2, 2] T × H

16 × W
16 × 256

Conv 3D 3 × 3 × 3 / 256 / [1, 1, 1] T × H
16 × W

16 × 256
Conv 3D 3 × 3 × 3 / 256 / [1, 1, 1] T × H

16 × W
16 × 256

Conv 3D 3 × 3 × 3 / 512 / [1, 2, 2] T × H
32 × W

32 × 512
Conv 3D 3 × 3 × 3 / 512 / [1, 1, 1] T × H

32 × W
32 × 512

Conv 3D 3 × 3 × 3 / 512 / [1, 1, 1] T × H
32 × W

32 × 512
Conv 3D 3 × 3 × 3 / 512 / [1, 1, 1] T × H

32 − 2 × W
32 − 2 × 512

BiLSTM - T × 512

Audio Embedding Module: input size M × 4T × 1
Layer Filter size / number / stride Output dimensions

Conv 2D 3 × 3 / 128 / [2, 2] M
2 × 2T × 128

Conv 2D 3 × 3 / 256 / [2, 2] M
4 × T × 256

Conv 2D 5 × 5 / 256 / [1, 1] M
4 × T × 256

ResBlock 2D
3 × 3 / 256 / [1, 1]
3 × 3 / 256 / [1, 1]

M
4 × T × 256

Flatten - T × M
4 * 256

Linear M
4 * 256 × 512 T × 512

Table 2. Network architecture for speech reconstruction from
silent video.

Dataset N=0 N=44 N=88 N=132
LRW 84.14% 85.34% 85.41% 85.32%

Dataset N=0 N=56 N=112 N=168
LRW-1000 44.93% 50.70% 50.82% 50.70%

Table 3. Lip reading: ablation on memory slot size

Metric N=0 [2] N=50 N=150
STOI 0.731 0.731 0.738

ESTOI 0.535 0.570 0.579
PESQ 1.772 1.946 1.984

Table 4. Speech reconstruction from silent video: ablation on
memory slot size

iment in speaker-dependent setting on GRID. This indicates
that the larger memory slot size becomes, the greater the
model performance achieves. Thus, we use N = 360 for
the speaker-independent setting which has more variables
for different lip movements and the corresponding speech
sounds.
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