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Figure A.1: Hardware setup for acquiring N-ImageNet.
Note that the units are provided in centimeters.

A. Experimental Details

A.1. Hardware Setup

We report the dimensions of the hardware used for
recording N-ImageNet data in Figure A.1. The custom
hardware is utilized for generating N-ImageNet along with
its variants, where the detailed generation process is de-
scribed in Section 3.1. In addition, we provide a sample
Arduino [2] script for generating arbitrary event camera mo-
tion in Figure A.2. Using the aforementioned setup, we
make 50µs event camera recordings of each ImageNet [14]
image.

A.2. Representation Implementation

In this section, we report the detailed implementations of
event representations used in the paper.

A.2.1 Learning-based Representations

We first describe the details about learned representations,
namely EST [7] and MatrixLSTM [4]. EST [7] was used
in Section 4.1 and 4.2 for evaluating its performance on N-
ImageNet and its variants. We adapt the implementation
of Gehrig et al. [7] for implementing Event Spike Tensor
(EST). We train EST with a batch size of 16.

MatrixLSTM [4] was tested in N-ImageNet and its vari-

Figure A.2: Arduino code for acquiring N-ImageNet.

ants, where the results are shown in Section 4.1 and 4.2.
We use the implementation of the original paper [4] for Ma-
trixLSTM. We train MatrixLSTM with a batch size of 16.

A.2.2 Non Learning-based Representations

We report the details about representations that do not in-
corporate learning. For all our experiments conducted on
N-ImageNet, we use a batch size of 256. We make further
specifications on time surface [8], HATS [15], and DiST.
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Dataset
Input Shape

(H ×W )
# of

Epochs
# of

Train Data
# of

Test Data
N-Cars [15] 128 × 128 12 15422 8607
CIFAR10-DVS [9] 128 × 128 23 8000 2000
ASL-DVS [3] 180 × 240 5 800 100000
N-Caltech101 [12] 240 × 304 30 7000 1709

Table A.1: Dataset statistics for fixed epoch training evalu-
ation.

Dataset
Minimum
Train Data

Maximum
Train Data Increment

# of
Test Data

N-Cars [15] 1000 14000 1000 8607
CIFAR10-DVS [9] 500 8000 500 2000
ASL-DVS [3] 200 1000 200 2000
N-Caltech101 [12] 1000 7000 1000 1709

Table A.2: Dataset statistics for resource-constrained train-
ing evaluation.

For the time surface, we set the time constant τ of the expo-
nential smoothing kernel to 0.3.

For HATS [15], we make a slight modification from the
original paper to facilitate batch-wise parallelizable imple-
mentation. The original version of HATS utilizes memory
cells that keep track of the recent events in a fixed time
window. While this is suitable for asynchronous inference,
it hinders large batch training, as sequential operations are
present. Thus we opt to keep track of top k events for each
pixel, which could be efficiently implemented using Py-
Torch Scatter [11]. In our experiments we set k = 5. Also,
while HATS originally produces a low-resolution represen-
tation from neighborhood aggregation, we apply padding
before aggregation to keep the resulting representation at
high resolution. This lead to the enhanced performance on
N-ImageNet shown in Table 4, 6.

For DiST, we set the discount factor from Equation 1 to
α = 3 and the neighborhood size from Equation 2 to ρ = 5.
To efficiently implement the sorting operation, we utilize
the scatter max operation from Pytorch Scatter [11].

A.3. Pre-training Experiment Setup

We further provide details about the experiments for val-
idating N-ImageNet pretraining, where the results are dis-
played in Section 4.1. Unlike the N-ImageNet validation
experiment in Table 4, input representations are reshaped
to fit the spatial resolution of the tested datasets. The input
resolution for each dataset is shown in Table A.1.

Fixed Epoch Training We first train event-based object
recognition algorithms with various initialization schemes
(N-ImageNet pretraining, ImageNet pretraining, random
initialization) on existing benchmarks. Details about the
experimental setup are provided in Table A.1. Under the
fixed number of train/test data, seven models from Table 4
are trained with a learning rate of 0.0003.

Factor Trajectory Brightness

Change Amount Small Big Small Big

Validation Dataset
Number 1, 2 3, 4, 5 7, 8 6, 9

Timestamp Image [13] 38.31 33.70 33.27 28.04
Timestamp ImageD [13] 35.86 32.37 30.67 26.41

Sorted Time Surface [1] 38.34 31.95 33.47 28.38
Sorted Time SurfaceD [1] 35.97 32.28 30.73 26.27

DiST 40.15 34.42 35.87 30.88

Table B.1: Mean accuracy of models with explicit event
denoising (superscripted D) measured on N-ImageNet vari-
ants.

Resource-constrained Training We further evaluate the
different initialization schemes under resource-constrained
settings. All networks are trained for 5 epochs on the
datasets shown in Table A.2. We train each model with an
increasing number of train data where the amount of incre-
ment is provided in Table A.2, starting from the minimum
value until it reached the maximum. For example, in N-
Caltech101, we trained models with training data sizes of
1000, 2000, . . . , 7000.

A.4. Clarification on Structural Similarity Index
Measure (SSIM)

We used SSIM in Section 4.2 to evaluate the visual con-
sistency of event representations amidst camera trajectory
and brightness changes. SSIM between two windows x and
y of size N ×N is defined as follows,

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
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2
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2
x + σ

2
y + c2)

, (1)

where µx, µy are the mean value of the windows, σx, σy are
the standard deviation of the windows, σxy is the covariance
between the windows, and c1 = 6.5025, c2 = 58.5225. In
all our experiments, we used SSIM with a window size of
N = 11.

B. Additional Ablation on DiST
We perform an additional ablation study with the dis-

counting operation of DiST by establishing comparisons
against explicit denoising. Recall that the DiST serves as
a robust event representation thanks to its noise suppression
from discounting and speed invariance from sorting (Sec-
tion 3.2).

We apply the density-based denoising scheme of Feng et
al. [6] on the events from the N-ImageNet variants.
Density-based denoising first voxelizes input events and
further removes background activities by thresholding on
the voxel-wise event densities. Hot pixels are eradicated by



convolving the voxel representation with a hand-crafted fil-
ter.

The denoised events are given as input to the times-
tamp image [13] and sorted time surface [1], which are
discount-ablated versions of DiST. The validation accura-
cies of these models are shown in Table B.1, where the
denoised inputs do not lead to enhanced robustness. Such
hand-crafted denoising algorithms have been effective for
robust classification in existing datasets with a small num-
ber of classes [16, 17]. However, these methods often re-
move subtle visual details (e.g. texture), which are crucial
cues for fine-grained object recognition.

The discount operation of DiST adaptively aggregates
neighborhood evidence to suppress noise. DiST is capable
of preserving visual subtleties, which is observable from the
high SSIM values reported in Figure 7. Thus DiST is more
suitable for robust, fine-grained object recognition than ex-
plicit denoising.

C. Full Robustness Evaluation Results
We report the full results on the N-ImageNet variants,

as shown in Table C.1. Recall we have generated nine
validation datasets for quantifiable robustness evaluation.
DiST outperforms existing event representations in most N-
ImageNet variants. Notably, DiST shows superior perfor-
mance in all N-ImageNet variants with brightness change.
This indicates that the discounting operation effectively
suppresses noise frequently triggered from such environ-
ments.

We make further analysis on the effect of camera trajec-
tory and scene illumination changes in object recognition
accuracy. Table C.2, C.3 display the average accuracy of
models from Table C.1 for each validation dataset. Both
tables demonstrate that performance drop increases as the
amount of change intensifies. For trajectory changes, a stark
accuracy drop occurs from original to validation 5, valida-
tion 1 to validation 3, and validation 2 to validation 4. This
indicates that given a fixed trajectory shape, performance
deteriorates as more dynamic camera motion takes place.
For brightness changes, a similar phenomenon is observable
by comparing validation 6 with 7, and validation 8 with 9:
accuracy drops rapidly as brightness change increases.

D. Visualization of DiST
We visualize DiST compared with the timestamp im-

age [13] and sorted time surface [1] in Figure D.1. DiST
is created by first sorting the timestamp image [13] and ap-
plying the discount mechanism stated in Equation 2. No-
tice that, unlike the other two representations, DiST not
only suppresses background activities and hot pixels, but
also demonstrates consistent representation in various con-
ditions with high SSIM.

Figure D.1: Comparison of DiST against other representa-
tions in the original N-ImageNet dataset and Validation 6
variant (low lightning condition). DiST is able to suppress
noise in both conditions.
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Change None Trajectory Brightness Average
Validation
Dataset Orig. 1 2 3 4 5 6 7 8 9 All

MatrixLSTM [4] 32.21 32.87 33.13 26.84 24.00 26.02 17.72 25.57 32.24 29.47 27.54
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Timestamp Image [13] 45.86 43.01 33.62 39.37 25.39 36.23 21.16 30.02 36.52 34.92 33.37
Sorted Time Surface [1] 47.90 44.33 33.50 40.17 23.72 37.19 21.57 30.31 36.63 35.18 33.62
DiT 46.10 42.96 33.46 39.62 23.95 37.25 22.21 29.64 35.68 34.63 33.27
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Table C.1: Full robustness evaluation results on N-ImageNet and its variants.

Dataset
Change
Amount Shape

Average
Accuracy

Original None Square↺ 45.52

Validation 1 Small Vertical 42.37
Validation 2 Small Horizontal 33.08
Validation 3 Big Vertical 37.57
Validation 4 Big Horizontal 24.08
Validation 5 Big Square↺ 35.67

Table C.2: Average accuracy of models evaluated on N-
ImageNet and its trajectory variants. ↺ indicates counter-
clockwise rotation.

Dataset
Change
Amount

Relative
Brightness

Average
Accuracy

Original None Normal 45.52

Validation 6 Big Dark 20.80
Validation 7 Small Dark 29.01
Validation 8 Small Bright 35.12
Validation 9 Big Bright 33.55

Table C.3: Average accuracy of models evaluated on N-
ImageNet and its brightness variants.
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