
Point Cloud Augmentation with Weighted Local Transformations
(Supplementary Materials)

In this supplement, we provide detailed discussions and
experimental results. This includes 1) Implementation de-
tails of PointWOLF, 2) Proof of Proposition 1: smoothness
of our transformation, 3) Pseudocode of PointWOLF from
a perspective of the kernel regression for transformations,
4) Additional analyses on global transformation robustness
and anchor points/kernel bandwidth, 5) Qualitative analy-
sis on shape identity, 6) Estimation of α∗, and 7) Applying
AugTune to CDA.

1. Implementation Details

Our PointWOLF is a local data augmentation method.
Other augmentation techniques can be applied before or af-
ter our method. In our experiments, we applied several con-
ventional data augmentations (CDAs) after the PointWOLF
augmentation such as normalization and global transfor-
mations. Table 1 shows the default augmentation range of
PointWOLF with ModelNet40 (MN40) [1], ScanObjectNN
(SONN) [2], and ShapeNetPart [3] respectively, whereM is
the number of anchor points, h is a kernel bandwidth, ρr is
a rotation range, ρs is a scaling range, and ρt is a translation
range. For synthetic data such as MN40 and ShapeNetPart,
we adopt a relatively small local transformation range based
on the assumption that a relatively less strong augmentation
will be beneficial since the point clouds are pre-aligned and
less noisy. On the other hand, in the case of real-world data,
we adopt a larger range since we observe that the dataset
has a larger variability. Furthermore, we use the projection
matrix Π = diag(πx, πy, πz) for the binary axis selection
follows πx, πy, πz ∼ Bernoulli(0.5). On top of this, we do
an additional projection of the axes for local scaling and
translation for more shape diversity.

Table 1. Default Augmentation Range.
Dataset (M , h, ρr , ρs, ρt)

ModelNet40 (4,0.5,10,3,0.25)

ShapeNetPart (4,0.3,15,3,1)

ScanObjectNN (4,0.3,30,3,1)

2. Proof of Smooth Transformation
Proposition 1 If a kernel function Kh(·, ·) and all lo-
cal transformations {Tj}Mj=1 are smooth, then the locally
weighted transformation T̂ (·) in (1) is a smooth transfor-
mation.

Proof: Let the kernel function Kh : R3 → R and all local
transformations {Tj}Mj=1 : R3 → R3 are smooth functions.
We will show that the locally weighted transformation T̂ (p)
is a smooth transformation, where T̂ (p) is written as

T̂ (p) =

∑M
j=1Kh(p,pAj )Tj(p)∑M

k=1Kh(p,pAk )
=

M∑
j=1

K̃j(p)Tj(p).

(1)

We simply rewrite
Kh(p,p

A
j )∑M

k=1Kh(p,pA
k )

as K̃j(p). The smooth-

ness of K̃j(p) where the denominator is non-zero is triv-
ial. This follows from the sum rule and the quotient rule
for derivatives [4], where it holds under the mild conditions
(i.e., Kh(pi,pj) > 0 for ∀pi,∀pj).

If K̃j(p)Tj(p) is smooth for each j, T̂ (p) is smooth
by the sum rule [4]. Thus proving the smoothness of
K̃j(p)Tj(p) for an arbitrary j is sufficient to prove the
smoothness of T̂ (p). For notational simplicity, let us
rewrite Tj(p) as T (p) and K̃j(p) as K̃(p). In addition,
p(1), p(2), p(3) denote the values of x, y, z coordinate of

p respectively, i.e., p =
[
p(1) p(2) p(3)

]>
. This notation

is also used for T (p) and F (p), where F (p) = K̃(p)T (p).
In order to prove that F is smooth, we should show that

for each n ∈ N, all partial derivatives ∂nF(i)

∂p
n1
(1)
∂p

n2
(2)
∂p

n3
(3)

exist

and are continuous for every non-negative n1, n2, n3, such
that n1 + n2 + n3 = n.

First, consider the case n = 1. We can obtain a partial
derivative of F by using the product rule [4].

∂F(i)

∂p(j)
= T(i)

∂K̃

∂p(j)
+ K̃

∂T(i)

∂p(j)
, i, j = 1, 2, 3. (2)

Similar to Eq. (2), for arbitrary n ≥ 1, the partial deriva-
tives of F is obtained by simply using the product rule [4].

∂nF(i)

∂p
n1
(1)
∂p

n2
(2)
∂p

n3
(3)

can be written as



Figure 1. Confidence Score Curves to α with Toy Examples. Confidence scores of P∗ (blue) are based on different α ∈ [0, 1]. Desired
difficulty (orange line ‘-’) is c = λcP . The results suggest that the optimization by gradient-based algorithms is impractical since fluctuating
curves have too many local minima.
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where ck1,k2,k3 is a coefficient. Also, it is well known that
the product of two continuous functions is continuous [4],
thus F is smooth. Hence, the locally weighted transforma-
tion T̂ (p) is a smooth transformation. �

3. Kernel Regression for Transformations
As mentioned in the main paper, we derive the Point-

WOLF algorithm from the perspective of kernel regres-
sion for transformations. Before the derivation, we briefly
revisit the local transformation and augmentation process.
The point pi after local transformation according to anchor
point pAj as follows:

pj
i = SjRj(pi − pAj ) + bj + pAj . (4)

When the kernel function is equal to

wj
i = exp

(
−‖Πj(pi − pAj )‖22

2h2

)
, (5)

the augmented point becomes

p′i =

∑M
j=1 w

j
ip

j
i∑M

k=1 w
k
i

. (6)

The above method transforms each pointM times by the
local transformations and interpolates them by the weights
using a kernel. Alternatively, we can create and apply a
smoothly varying transformation for each point once by
weighting local transformations. We can decompose the

Algorithm 1 PointWOLF as Kernel Regression
Input: original point cloud P ∈ R3×N , kernel bandwidth h
Input: # points N , # anchor points M
Input: range for scaling ρs, range for rotation ρr, range for
translation ρt, axis dropout probability β
Output: augmented point cloud P ′ ∈ R3×N

1: PA ← FPS(P, M) . PA ∈ R3×M

2: for j = 1 to M do
3: Sj ← diag(sx, sy, sz) . s ∼ U[1,ρs]

4: Rj ← RotationMatrix(θx, θy, θz) . θ ∼ U[−ρr,ρr]
5: bj ← (bx, by, bz) . b ∼ U[−ρt,ρt]
6: Πj ← (πx, πy, πz) . π ∼ Bernoulli(β)

7: end for
8: for i = 1 to N do
9: for j = 1 to M do

10: wji ← Kh(pi,p
A
j ; Πj) . Eq. (5)

11: end for
12: A′i ←

∑M
j=1 w

j
iSjRj∑M

k=1 w
k
i

. Eq. (7)

13: b′i ←
∑M

j=1 w
j
i (−SjRjp

A
j +bj+pA

j )∑M
k=1 w

k
i

. Eq. (8)

14: p′i ← A′ipi + b′i . Eq. (9)
15: end for
16: P ′ ← {p′i}Ni=1

weighted local transformation into a transformation matrix
A′i and a translation vector b′i as following:
Transform matrix A′i is denoted as

A′i =

∑M
j=1 w

j
iSjRj∑M

k=1 w
k
i

, (7)

and transform vector b′i is denoted as
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∑M
j=1 w

j
i (−SjRjp

A
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k=1 w
k
i

. (8)



Once the smoothly varying transformation A′ and b′ are
obtained, we apply them to pi as

T̂ (pi) = A′ipi + b′i. (9)

The pseudocode derived from this interpretation is provided
in Algorithm 1.

4. Additional Analyses of PointWOLF

For further analyses, we use PointNet++ as the base model.

4.1. Robustness against Global Transformations

We evaluate the robustness to global transformations by
adding different rotations and scalings to MN40. As shown
in Table 2, we observe PointWOLF highly improves the ro-
bustness to global transformations (e.g., 4.7% for z-axis ro-
tation and 9.7% for scaling by 2×) except y-axis rotation.

4.2. # Anchor points M and Kernel Bandwidth h

According to Table 3, PointWOLF consistently outper-
forms the base model (PointNet++ with 86.6%), suggesting
it is fairly robust across varying # anchor points M and ker-
nel bandwidth h with SONN. Both M and h are both re-
lated to kernel effects on PointWOLF algorithm. To explore
the kernel effects on the PointWOLF alone, we did not use
AugTune for this analysis. Especially, we assume that if M
is small, large local influence h at each anchor point is pre-
ferred as it can produce a good augmentation maintaining
its original shape (e.g., for M = 2, worst at h = 0.1, best
at h = 0.5, 0.7). Conversely, small local influence is pre-
ferred with large M due to diversity (e.g., for M = 256,
worst at h = 0.7, best at h = 0.1). The only worse re-
sult from (M,h) = (2, 0.1) can be explained as generation
of some heavily augmented objects due to extreme contrast
between two local influence. Visualizations are provided in
Section 5.

5. Qualitative Analysis on Shape Identity

As mentioned in the main paper, if the shape identity is
lost by strong augmentation (e.g., PointWOLF with small
number of anchor points and small local influence), Aug-
Tune adaptively adjusts the magnitude of augmentation and
preserve the shape identity. Moreover, we rarely observed
such failure samples with reasonable parameters. Herein in
Figure 2 we provide additional visualization of unrealistic
samples for analysis. Given the original object, PointWOLF
with extreme parameters (M,h) = (2, 0.1) sometimes gen-
erates unrealistic samples (top row). Then, AugTune works
as a safeguard to preserve the shape identity (bottom row)
by interpolating between the original and the augmented
samples.

Table 2. Robustness to global Transformations. R:Rot, S:Scale.
Method R:X-axis R:Y-axis R:Z-axis S:0.6 S:2.0

CDA 74.6 89.4 74.2 83.3 62.4
PointWOLF 78.6 88.3 78.9 89.1 72.1

Table 3. Anchor points and kernel bandwidth analysis.
h M = 2 M = 4 M = 16 M = 32 M = 256

0.1 76.9 89.0 87.6 88.3 88.8
0.3 88.3 89.7 88.0 88.3 88.5
0.5 88.5 88.5 88.5 88.1 88.5
0.7 88.5 87.3 88.1 87.8 87.3

Algorithm 2 Estimation of α∗

Input: original point cloud P ∈ R3×N , ground truth y

Input: classifier f(·; w), difficulty coefficient λ
Output: α

1: P ′ ← PointWOLF(P) . Algorithm 1 in Section 3.2
2: ŷP ← f(P; w), ŷP′ ← f(P ′; w)

3: cP ← ŷ>Py, cP′ ← ŷ>P′y . confidence scores
4: c← max(cP′ , (1− λ)cP) . target confidence scores
5: Estimating α∗ with one of method below

Method 1 Gradient Descent

Input: learning rate γ, max iteration k
1: Initialize α
2: for i = 1 to k do
3: L ←‖ c− f(αP + (1− α)P ′)>y ‖2
4: α← α− γ∇αL . Gradient descent for optimizing

Eq. (10)
5: end for
6: α∗ ← α

Method 2 Grid Search

1: H← [0, 0.1, · · · , 0.9, 1]

2: α∗ ← argmin
α∈H

‖ c− f(αP + (1− α)P ′)>y ‖2 .

Eq. (10)

Method 3 Linear Approximation

1: α∗ ← c− cP′

cP − cP′
. approximate α by Eq. (11)

6. Estimating α∗ for AugTune
The goal of AugTune is to find the optimal solution α∗

to the following optimization problem.

α∗ = argmin
α

‖ c− f(αP + (1− α)P ′) ‖2 . (10)

Ideally, AugTune with α∗ generates the augmented sam-
ple with the exact target difficulty c. In this section, we de-
scribe three approaches we have tried to estimate α∗, which



Figure 2. Unrealistic samples of PointWOLF. Given an original object, PointWOLF with extreme parameters sometimes generates unre-
alistic samples via strong augmentation (Top). However, AugTune linearly interpolates the augmented sample with the original sample to
alleviate the difficulty, resulting in the shape identity preservation (Bottom).

is specified in Algorithm 2. The first approach is the gra-
dient descent method. But the direct optimization seems to
be infeasible. In Figure 1, the confidence score curves with
respect to α largely fluctuate. It suggests that the optimiza-
tion by gradient-based methods is not just computationally
expensive but also almost impossible to reach the target dif-
ficulty from a random initial point.

Next, we consider a grid search on α, which is less time-
consuming when the grid is coarse. We select α with the
smallest error to the target confidence score among a prede-
fined list of values between 0 and 1 with 0.1 intervals. The
grid search leads to a reasonably good α with similar dif-
ficulty as targeted but still, it takes a substantial amount of
time. The computational time linearly increases as the num-
ber of the predefined values increases although the small
interval for α does not guarantee better performance.

Lastly, we approximate α∗ by the convex combination in
confidence space.

αcP + (1− α)cP′ = c. (11)

Table 4 illustrates the experimental comparison between the
grid search and the linear approximation. Higher perfor-
mance from the linear approximation (89.7%) shows that
it is the simplest yet effective approach. Hence, we choose
this approach as the final estimation method for AugTune.

Table 4. Various approximation of α.
Method CDA Grid Search Approx

Acc 86.6 89.0 89.7

Table 5. Applying AugTune to CDA.

Search Space w/o AugTune w/ AugTune

S 87.8 88.7
2S 87.7 88.1
3S 86.7 87.0
4S 85.1 86.9

7. Applying AugTune to CDA.

We demonstrate the extensibility of AugTune by ap-
plying to classical data augmentations in point clouds,
i.e. CDAs. We employ ReducedMN40 with PointNet++ for
ablation. Except for rotation, scaling, translation, and point-
wise jittering are default augmentations for ReducedMN40
as it has already been known to be pre-aligned. We set
the augmentation range S same as [5], e.g., (ρs=[0.8, 1.2],
ρt=[−0.1, 0.1], σ=0.01) and use the multiples of the aug-
mentation ranges: kS=(kρs, kρt, kσ). σ denotes the stan-
dard deviation of Gaussian noise. For the difficulty coeffi-
cient λ, we perform a grid search with a range of [0.7, 0.9]
with 0.05 intervals. Table 5 shows that CDA w/ AugTune
outperforms CDA w/o AugTune by 0.3 % ∼ 1.8 %. No-
tice that additional tuning to basic CDA in default space



S shows prominent improvement, where it achieves com-
parable performance to other complex augmentations. This
observation follows our previous assumption in Section 1
of less strong augmentation being preferred by synthetic
dataset. Therefore, we believe that AugTune benefits not
just PointWOLF, but also other classical data augmentation
methods.
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