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A. Image Classification
A.1. Evaluation Metrics

ECE. Expected calibration error (ECE) [5] is a widely used metric for evaluating confidence calibration performance. To
estimate the expected gap between accuracy and confidence, it partitions samples into total M bins, Bm for m = 1, ...,M ,
by confidence. Then, each bin Bm contains samples with confidence within [m−1

M , m
M ]. With this binning, ECE is defined as

follows,

ECE =
1

n

M∑
m=1

|Bm| × |Acc(Bm)− Conf(Bm)|

where n is number of samples, Acc(Bm) represents accuracy of samples in Bm, and Conf(Bm) represents average confidence
of samples in Bm. The lower value of ECE indicates that a model is well-calibrated.

The reliability diagram [1, 4] and calibration plot are visualization tools to show how well confidence of a model is
calibrated by plotting accuracy against confidence values.

AURC. Area under risk-coverage curve (AURC) [3] measures how well predictions are ordered by confidence values.
Given a classifier, we can define a selective classifier with a threshold which covers only samples with higher confidence
than the threshold. Then, coverage can be defined as the proportion of covered samples (i.e., not rejected samples by the
selective classifier) to the entire dataset. Risk is defined as an error rate computed by using the covered samples. Therefore,
as coverage increases from 0 to 1, risk approaches to the top-1 error on the entire data. AURC is defined as the area under
the risk-coverage curve. If a model has a low AURC value, it means that correct and incorrect predictions from the model
are well-separable by confidence values.

A.2. Methods

Label smoothing. Szegedy et al. [6] proposes a method named label smoothing which improves the performance of deep
learning models by adjusting one-hot targets to be soft targets. Soft targets yLS are computed as a weighted sum of the hard
targets y and the uniform distribution over classes, i.e.,

yLS = (1− ϵ)y +
ϵ

K

where ϵ is a smoothing parameter and K is the number of classes.

Cutout. Cutout [2] is a simple regularization method designed for image classification. Motivated by dropout and image
augmentation, Cutout generates a partially occluded version of input samples, which can be interpreted as an augmented data
by applying the structured dropout to an input space. In detail, a square-shaped region with the predefined size is randomly
selected on an input image, and that region is zeroed-out during training.
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CutMix. Yun et al. [9] suggests a method inspired by Cutout [2] and Mixup [11]. This method generates a new train-
ing sample (x̃, ỹ) from two samples (xa, ya) and (xb, yb). From xa, a rectangular region with bounding box coordinates
(rx, ry, rw, rh) will be sampled as a patch. Then, the region of the same coordinates in xb will be replaced by the patch to
generate x̃. For the generated sample x̃, its target ỹ is defined as

ỹ = λya + (1− λ)yb

where λ denotes the combination ratio sampled from the uniform distribution (0, 1).

ShakeDrop. ShakeDrop [7] is a regularization technique designed for ResNet and its variants. This method gives regular-
ization effect by replacing residual blocks to ShakeDrop blocks. Let an input be x and an output of residual block be F (x),
then the output of l-th ShakeDrop block G(x) is defined as,

G(x) =


x+ (bl + α− blα)F (x), for the train-forward phase
x+ (bl + β − blβ)F (x), for the train-backward phase
x+ E[bl + β − blβ]F (x), for test phase

where α, β are independent uniform random variables and bl is a Bernoulli random variable with probability P (bl = 1) = pl,
which is a parameter with a linear decay according to the block index l:

pl = 1− l

L
(1− PL)

where L is the total number of building blocks and PL is an initial parameter. In our experiments, we use PL = 0.5 as
suggested in [7].

A.3. Datasets

CIFAR-100 is a dataset for multi-class image classification. It consists of 50K training images and 10K test images of
32×32 resolutions with 100 classes, and has the same number of images per class. The ImageNet is a large-scale dataset. It
consists of 1.2M training images and 50K validation images of various resolutions with 1K classes. It contains some images
that have multiple objects. In training, we use an input image that is resized to 256×256, and it is randomly cropped to have a
size of 224×224. For inference, we resize an image as 256×256 and perform the center crop to have a 224×224 sized input.

A.4. Experimental Results on CIFAR-100

Hyperparameters. For LS, we use the smoothing parameter ϵ of 0.1. For CS-KD1, we set the temperature τ to 4, and
the weight λcls to 1 [10]. For TF-KD2, we use TF-KDself method presented in [8]. The hyperparameters, the temperature
τ and weight α, for ResNet-18, DenseNet-121 and ResNeXt-29 are set to the values reported in [8]. For ResNet-101 and
PyramidNet, we use the temperature τ = 20 and weight α = 0.95, which are most widely used settings in the paper.

Ablation study on the hyperparameter αT of PS-KD. To investigate the effect of our hyperparameter αT , we provide the
validation performances in terms of top-1 error and ECE on CIFAR-100 with ResNet-18. The results are given in Fig. S1.
Considering both top-1 error and ECE metrics, we determine the optimal αT as 0.8. For αT > 0.8, we observe that ECE
suffers from PS-KD while top-1 accuracy still improves, implying that PS-KD with a large value of αT > 0.8 tends to
produce underconfident predictions as can be seen in Fig. S2. Fig. S2 shows the reliability diagrams on the validation dataset
with PS-KD. PS-KD with αT = 0.8 shows best calibration performance.

1CS-KD implementation:https://github.com/alinlab/cs-kd
2TF-KD implementation: https://github.com/yuanli2333/Teacher-free-Knowledge-Distillation

https://github.com/alinlab/cs-kd
https://github.com/yuanli2333/Teacher-free-Knowledge-Distillation
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Figure S1. Validation top-1 error and ECE according to αT from three repeated experiments on CIFAR-100 for ResNet-18. αT = 0.8 is
chosen as the best one and used for all other experiments.
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(a) αT = 0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

14

261

484

606
614

624

630

703

1014

5050
Average Confidence
Accuracy

(b) αT = 0.8
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(c) αT = 1.0

Figure S2. Reliability diagrams on the validation dataset of CIFAR100 with ResNet-18+PS-KD. The number on the top of each bin
represents the number of samples belonging to that bin.

Additionally, to examine the effect of using past predictions to soften hard targets, we conduct experiments with a fixed
value of αt ∈ {0.1, 0.2, 0.4, 0.6, 0.8} so that the effect of adjusting αt is excluded. From the curves of NLL and top-1 error
in Fig. S3, we observe that PS-KD with a fixed αt = 0.1 shows lower NLL and top-1 error than LS with ϵ = 0.1 (refer to
the shaded area on the curves), and the performances are improved as a fixed αt increases. Therefore, it can be concluded
that softening hard targets with predictions from the model itself is much better than just using a static softening operation
like LS. To further investigate the effect of adjusting αt, the curves from the linear growth strategy toward αT = 0.8 are also
depicted. Compared to the curves from the fixed αt = 0.8, we conclude that the simplest approach, the linear growth, works
surprisingly well for regularizing the model.
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Figure S3. NLL (left) and top-1 error (right) curves on CIFAR-100 with different αt values for DenseNet-121. Linear growth with
αT = 0.8 achieves the lowest NLL and top-1 error.

Additional calibration plots Fig. S4 shows the calibration plots of existing regularization methods on CIFAR-100. From
this figure, we can observe that the advanced regularization methods such as Cutout, CutMix, CutMix+SD benefit from
PS-KD in terms of calibration.
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(a) PyramidNet with Cutout
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(b) PyramidNet with CutMix
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Figure S4. Calibration plots of advanced regularization methods on CIFAR-100 with PyramidNet. PS-KD provides additional benefits to
existing methods in terms of calibration.



Extension results for self-KD methods combined with advanced data augmentations As summarized in Table S1, we
provide additional experimental results: [Cutout, CutMix, CutMix+SD] + LS, CS-KD, and TF-KD on CIFAR 100 with
PyramidNet. The results show that PS-KD can be effectively combined with advanced regularization techniques.

Model
+ Method

Top-1
Err (%)

Top-5
Err (%) NLL ECE

(%)
AURC
(×103)

PyramidNet 16.80 3.69 0.73 8.04 36.95
+ LS 17.82 4.72 0.89 3.46 105.02
+ CS-KD 18.31 5.70 1.17 14.70 70.05
+ TF-KD 16.48 3.37 0.79 10.48 37.04
+ PS-KD 15.49 3.08 0.56 1.83 32.14

+ Cutout 16.05 3.42 0.67 7.15 33.20
+ Cutout + LS 17.15 4.38 0.82 4.65 82.61
+ Cutout + CS-KD 18.20 5.25 1.06 13.78 66.69
+ Cutout + TF-KD 16.29 3.18 0.74 9.77 35.78
+ Cutout + PS-KD 14.82 2.86 0.54 3.69 29.77

+ CutMix 15.62 3.38 0.68 8.16 34.60
+ CutMix + LS 15.68 3.66 0.70 4.60 37.71
+ CutMix + CS-KD 15.89 3.60 0.73 9.28 35.47
+ CutMix + TF-KD 16.61 3.29 0.66 7.47 36.57
+ CutMix + PS-KD 15.03 2.91 0.58 5.81 30.22

+ CutMix + SD 14.07 2.38 0.51 3.96 28.65
+ CutMix + SD + LS 14.05 2.37 0.54 2.54 33.09
+ CutMix + SD + CS-KD 14.99 2.56 0.56 3.27 34.40
+ CutMix + SD + TF-KD 15.34 2.58 0.53 3.31 31.41
+ CutMix + SD + PS-KD 13.59 2.18 0.49 3.46 25.98

Table S1. Performance evaluation of self-KD methods with advanced data augmentation techniques. The values averaged over three runs
are reported. The best result is shown in boldface.



A.5. Experimental Results on ImageNet

Random search results of the hyperparameters. To find out the optimal hyperparmeter of CS-KD, TF-KD and PS-KD,
we perform a random search of hyperparameters over five trials with ResNet-152 for a fair comparison. We set the mini-
batch size to 512, and the other training setting is set to the same as ImageNet experiments in the main manuscript. For
CS-KD, we consider the range of the hyperparameters as follow: τ ∈ {1, 2, · · · , 20} and λcls ∈ {0.1, 0.5, 1, · · · , 4}. For
TF-KD, we use TF-KDreg method which shows better performance on ImageNet in the original paper [8]. We consider the
hyperparamters, the temperature τ ∈ {20, 30, 40}, weight α ∈ {0.1, 0.2, · · · , 0.5} and probability for the ground-truth class
a ∈ {0.90, 0.91, · · · , 0.99}. For PS-KD, the range of αT ∈ {0.1, 0.2, · · · , 1} is used. The results are presented in Table S2.

Model
+ Method

Top-1
Err (%)

Top-5
Err (%) NLL ECE

(%)
AURC
(×103)

ResNet-152 21.95 6.16 0.89 5.08 61.64
+ LS 21.80 6.03 0.94 3.42 70.83

+ CS-KD (τ = 10, λ = 4) 23.28 7.02 1.04 4.31 69.68
+ CS-KD (τ = 20, λ = 2) 22.30 6.46 0.95 4.92 54.13
+ CS-KD (τ = 1, λ = 0.1) 21.68 6.04 0.85 1.46 61.09
+ CS-KD (τ = 4, λ = 0.5) 21.67 6.01 0.88 3.79 61.39
+ CS-KD (τ = 10, λ = 3) 22.43 6.55 0.98 5.45 65.99

+ TF-KD (α = 0.3, τ = 20, a = 0.91) 22.72 6.49 0.92 4.69 65.30
+ TF-KD (α = 0.1, τ = 40, a = 0.95) 22.66 6.46 0.91 4.61 64.29
+ TF-KD (α = 0.2, τ = 40, a = 0.97) 22.99 6.66 0.93 5.13 65.69
+ TF-KD (α = 0.3, τ = 40, a = 0.92) 22.82 6.61 0.92 4.72 64.79
+ TF-KD (α = 0.1, τ = 30, a = 0.92) 22.74 6.52 0.92 5.25 64.76

+ PS-KD (αT = 0.9) 22.69 6.44 1.06 17.1 69.75
+ PS-KD (αT = 0.5) 21.67 5.92 0.88 7.33 63.19
+ PS-KD (αT = 0.1) 21.89 6.00 0.86 2.96 60.88
+ PS-KD (αT = 0.3) 21.51 5.86 0.84 1.85 60.61
+ PS-KD (αT = 0.8) 22.40 6.40 1.00 13.65 68.00

Table S2. Results over five trials of random search with ResNet-152. The best result for each method is shown in boldface.

Additional calibration plots Fig. S5 shows the calibration plots of comparison targets and CutMix. From this figure,
we observe that PS-KD is better calibrated than other methods as well as improves calibration performance of the existing
advanced regularization method, CutMix.
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Figure S5. Calibration plots on ImageNet with ResNet-152. (a) PS-KD shows slightly better performance compared to LS, CS-KD, and
TF-KD. (b) PS-KD provides additional benefits to CutMix in terms of calibration.



Additional samples from ImageNet validation dataset. In Fig. S6, additional samples from ImageNet validation dataset
and their predicted probabilities are presented. From these samples, we observe that PS-KD provides better outputs in the
sense of human interpretation.

Figure S6. Predicted probabilities for sample images from the baseline and PS-KD. From the top left, the ground-truth labels of these images
are ”king snake”, ”water snake”, ”cabbage butterfly”, ”buckle”, ”desk”, ”measuring cup”, ”sliding door” and ”orange”, respectively.



B. Object Detection
Table S3 shows the values of average precision (AP) over all classes. PS-KD shows higher AP values than the baseline

and other methods (i.e., LS, CS-KD and TF-KD) for 10 classes out of 20 classes.

Method Average Precision mAP

Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

78.26
78.44
78.33
78.28
79.50
79.72

ResNet-152 78.87 84.70 79.64 72.60 63.45 86.68 87.38 88.08 63.27 83.29
+LS 81.52 84.97 79.53 69.58 63.71 83.88 87.25 87.49 64.39 85.15
+CS-KD 79.93 82.58 78.97 70.91 65.34 84.56 87.20 87.40 62.18 83.96
+TF-KD 79.97 85.98 78.57 70.79 61.45 85.96 87.69 87.86 61.24 85.00
+PS-KD 79.59 83.60 79.74 70.24 64.64 87.30 88.39 88.04 65.48 86.75
+PS-KD + CutMix 83.54 85.99 79.23 72.69 65.08 86.66 88.23 88.93 64.14 86.75

Dining
Table Dog Horse

Mortor
Bike Person

Potted
Plant Sheep Sofa Train

TV
Monitor

ResNet-152 69.14 87.10 87.27 82.72 79.31 52.29 78.77 78.50 84.36 77.84
+LS 73.17 87.82 87.32 80.76 80.97 50.88 79.60 78.87 87.18 74.81
+CS-KD 72.47 85.17 87.41 82.08 81.32 53.43 82.04 76.97 85.40 77.33
+TF-KD 74.04 85.80 86.68 80.92 79.02 52.25 81.68 77.81 85.53 77.39
+PS-KD 77.98 87.68 87.55 85.07 81.42 53.15 82.50 79.78 83.64 77.45
+PS-KD + CutMix 71.98 87.10 87.73 84.01 81.34 56.05 78.07 79.76 87.92 79.21

Table S3. APs over all classes on PASCAL VOC 2007 testset. The best result for each class is in bold.

C. Machine Translation
C.1. Evaluation Metrics

BLEU. BLEU (Bilingual Evaluation Understudy) is an algorithm for numerically measuring the quality of machine trans-
lation from one natural language to another one. By using human translation as a reference, BLEU evaluates the quality of
machine translation via two aspects. One is how many n-grams in the translated output of a model appears in the reference.
If the more n-grams appear in both machine translation and human translation, the quality of machine translation is consid-
ered as better. We set n to 4, which is generally used for the evaluation. Another aspect of BLEU is the length of machine
translated sentence. If we evaluate the performance by using only n-grams, very short sentence with only few words in the
reference will have nearly a perfect score. To prevent this, an additional term comparing the length of machine translation
and human translation is considered in the calculation of BLEU.

C.2. Dataset

Dataset. We use IWSLT15 English to German (EN-DE) and German to English (DE-EN) dataset. It consists of 191K
training sentence pairs3, and 8,300 pairs of the training data are used for validation. We concatenate dev2010, dev2012,
tst2010, tst2011, tst2012, tst2013 datasets for a test set.
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