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This supplemental material provides additional related
work discussion (Sec. 1), additional background information
to the Hilbert-Schmidt independence criterion used in our
TUPI algorithm (Sec. 2.1) and in the visual attributes rank
learning problem on which we evaluate our TUPI approach
(Sec. 2.2), and a brief summary of our denoising algorithm
with an algorithm description (Sec. 3). We also provide
further experimental details and results including tests of
statistical significance, parameter sensitivity, and simple fail-
ure cases (Sec. 4), plus additional future work ideas (Sec. 6).
Lastly, we present details of our adaptations of related base-
lines (Sec. 5): of Kim et al.’s algorithm [6] which only ap-
plies to one-dimensional test time features (Sec. 5.1); and of
the CoConut algorithm proposed by Khamis and Lampert [5]
(Sec. 5.2) for TUPI in visual attribute ranking problems, and
our approaches to combine our algorithm with CoConut to
exploit these two complementary algorithms for increased
performance (Sec. 5.3). Some contents from the main paper
are reproduced so that this document is self-contained.

1. Additional related work details
In the main paper (Section 1), we discuss how the TUPI

problem is related to—but different from—works in semi-
supervised learning, in multi-task learning, and in predictor
combination.

Domain adaptation is another related class of work to
TUPI: Here, an estimator trained on a data domain G
equipped with a probability distribution Pg is tested on data
generated from an updated probability distribution P′

g on
the same domain G. This setting leads to new algorithms
enabling adaptation of estimators in test-time using data sam-
pled from P′

g as auxiliary information [11]. However, these
algorithms focus on modeling the change of distributions in
the same domain. In contrast, in our TUPI setting, we use
test time data sampled from multiple heterogeneous feature
domains {Hi} and thus our contribution is complementary
to domain adaptation as a problem.

1.1. Related HSIC applications

The Hilbert-Schmidt independence criterion (HSIC) has
been successfully applied in clustering [13] and domain

adaptation [15]. Particularly relevant works are Song et al.’s
feature selection algorithm [12], which receives a set of fea-
tures and task-specific labels as random variables and outputs
the most statistically relevant features measured by HSIC,
plus Gevaert et al.’s kernel learning framework that tunes
the kernel parameters to maximize the dependence between
the task labels and features (kernels) [2]. For regression, in-
stead of maximizing the dependence between the prediction
and features, Mooij et al. minimize the dependence between
the features and the residuals—the deviations between the
estimated function values and the observed ground truths—
to enable regression independently of the unknown noise
generation process [8]. Our approach is inspired by these
algorithms; however, as they are designed for use in train-
ing, they cannot be straightforwardly applied to the TUPI
scenario without non-trivial adaptation.

2. Additional background

2.1. The Hilbert-Schmidt independence criterion

Suppose we have two data spaces V and W , equipped
with joint probability distribution Pvw and marginals Pv and
Pw, respectively. For V , we define a separable reproducing
kernel Hilbert space (RKHS) Kv of functions characterized
by the feature map ϕ : V → Kv and the positive definite
kernel function kv(v,v′) := ⟨ϕ(v), ϕ(v′)⟩.1 The RHKS
Kw, and the corresponding kernel kw and feature map ψ
are similarly defined for W . The cross-covariance operator
associated with the joint probability distribution Pvw is a
linear operator Cvw : Kv → Kw which generalizes the
cross-covariance matrix in Euclidean spaces:

Cvw = Evw [(ϕ(v)− Evϕ(v))⊗ (ψ(w)− Ewψ(w))] ,

where ⊗ is the tensor product. Given this operator, the
Hilbert-Schmidt independence criterion (HSIC) associated
with Kv, Kw, and Pvw is defined as the Hilbert-Schmidt
norm of Cvw which generalizes the Frobenius norm defined

1A separable Hilbert space has a countable orthonormal basis facilitating
the introduction of Hilbert-Schmidt operators.



for matrices to operators [3]:

HSIC(Kv,Kw,Pvw) = ∥Cvw∥2HS

= Evv′ww′ [kv(v,v
′)kw(w,w′)]

+ Evv′ [kv(v,v
′)]Ew,w′ [kw(w,w′)]

− 2Evw [Ev′ [kv(v,v
′)]Ew′ [kw(w,w′)]] . (1)

HSIC is defined as long as the kernels kv and kw are
bounded, and it is always non-negative [3]. Furthermore,
when kv and kw are universal [14], such as when they are
Gaussian, HSIC is zero only when the two distributions
Pv and Pw are independent: HSIC is the maximum mean
discrepancy (MMD) between the joint probability measure
Pvw and the product of marginals PvPw computed with the
product kernel kvw = kv ⊗ kw [9]:

HSIC(Kv,Kw) = MMD2(Pvw,PvPw)

= ∥µk[Pvw]− µk[PvPw]∥k ,

where ∥ · ∥k is the RKHS norm of Kk and µk[P] is the kernel
mean embedding of P based on k [9]. If the kernels kv
and kw are universal, the MMD becomes a proper distance
measure of probability distributions (i.e., MMD(PA,PB) =
0 only when PA and PB are identical), which applied to
the distance between the joint and marginal distributions
corresponds to the condition of independence.

In practice, we do not have access to the underlying prob-
ability distributions but only a sample {xi,yi}ni=1 drawn
from Pvw. We construct a sample-based HSIC estimate:

ĤSIC = tr[KvCKwC],

where [Kv]ij = kv(vi,vj), [Kw]ij = kw(wi,wj), and
C = I − 1

n11
⊤ with 1 = [1, . . . , 1]⊤. The estimate ĤSIC

converges to the true HSIC with O(1/
√
n) [3].

2.2. The visual attribute rank learning problem

Binary object labels describing the presence or absence of
attributes might be useful for automatic search [7, 17]. How-
ever, binary descriptors are insufficient for many attributes.
Imagine shopping for shoes: there is no clear boundary be-
tween ‘sporty’ and ‘non sporty’ shoes. However, it is easy
as a human to state that one shoe is ‘sportier’ than another.
Thus, the Parikh and Grauman approach of measuring rela-
tive attributes (RA) [10] has broadened attribute-based data
analysis to abstract and non-categorical labels.

To facilitate the training of automatic attribute predictors,
users rank pairs of data points to describe their relationships:
object xi exhibits a stronger/weaker presence of attribute
A than xj . This technique can be thought of as implicitly
introducing a global ranking function to a dataset for a given
attribute: There is a function f∗ such that f∗(xi) > f∗(xj)
implies that the rank of xi is higher than that of xj .

Suppose we have a set of input features Gtr =
{gtr

1 , . . . ,g
tr
l } ⊂ G representing the underlying objects

Xtr = {xtr
1 , . . . ,x

tr
l } ⊂ X via a feature extractor g :

X 7→ G (g(xtr
i ) = gtr

i for 1 ≤ i ≤ l) and the cor-
responding pairwise rank labels R = {(i(r), j(r))}r ⊂
{1, . . . , l} × {1, . . . , l}: (i, j) ∈ R implies that the rank of
xi is higher than xj . An estimate f of f∗ can be constructed
by minimizing the average rank loss:

L(f) =
∑

(i,j)∈R

l((xi,xj); f),

l((xi,xj); f) = max (0, 1− (f(gi)− f(gj)))
2
.

Once an estimate f is constructed, we can apply it to un-
seen test data points G = {g1, . . . ,gn} to construct the
prediction f I := f |G = [f(g1), . . . , f(gn)]

⊤.

3. Summary of our denoising algorithm
for TUPI

Suppose we are given an initial predictor f(0) = f I and
a set of test time features {Hi}mi=1. Our algorithm improves
f(t) by embedding the predictor and the test time features
into a manifold M̂ of (centered and scaled) kernel matrices,
and performing manifold denoising therein:

f(t) → K̃f (t) :=
Kf (t)C

∥CKf (t)C∥F

Hi → K̃i :=
KiC

∥CKiC∥F
,

where ∥A∥F is the Frobenius norm of A, and Kf and Ki are
the kernel matrices constructed from f and Hi, respectively:

[Kf ]kl = kf ([f ]k, [f ]l) = exp

(
−∥[f ]k − [f ]l∥2

σ2
f

)
(2)

[Ki]kl = ki(h
i
k,h

i
l) = exp

(
−∥hi

k − hi
l∥2

σ2
i

)
with scale hyperparameters σ2

f and {σ2
i }mi=1. Here, hi

k de-
notes the k-th element of the feature setHi = {hi

1, . . . ,h
i
n}.

{σ2
f} is set to be twice the standard deviations of pairwise

distances of elements of f ; {σ2
i }mi=1 are tuned similarly.

This process is instantiated as iterative minimization of
an energy functional O(·; t)

O(f ; t) = d2M̂(K̃f , K̃f (t))

+ λ

m∑
i=1

(
wi(t)∑m
j=1 w

j(t)

)
d2M̂(K̃f , K̃i) (3)

wi(t) = exp

(
−
d2
M̂
(K̃f (t), K̃i)

σ2
w

)
, (4)



Algorithm 1 TUPI algorithm
Input: Initial predictor evaluations f I ; class of test time
features {Hi}mi=1; hyperparameters λ and σ2

w (Eq. 3);
(maximum iteration number T );
Output: Denoised evaluations fO;
t = 0;
f(t) = f I ;
repeat

Calculate weights {wi(t)} based on Eq. 4;
Update f(t) by minimizing O (Eq. 3);
t = t+1;

until termination condition is met (e.g. if t ≥ T );

where d2
M̂
(K̃A, K̃B) = 1− tr[K̃AK̃B ].

The number of iterations is a hyperparameter. In the
experiments, we set the maximum iteration number T at
50 and monitored the progress of ftion accuracy: we finish
the iteration immediately whenever the validation accuracy
did not increase from the previous iteration. Algorithm 1
summarizes the TUPI denoising process.

3.1. Large scale problems

For tasks where the time (O(mn3)) and memory
(O(mn2)) complexities of optimizing O are limiting, we
adopt the Nyström approximation of kernel matrix Kf :2

Kf ≈ KfBK
−1
BBK

⊤
fB , (5)

where [KfB ]kl = kf (bk, bl) for the basis set B =
{b1, . . . , bK} and [KfB ]kl = kf ([f ]k, bl). The rank K of
the approximation is based on computational and memory
capacity limits. Similarly, each Ki is approximated based
on the corresponding basis set (Ki ≈ KiB [K

i
BB ]

−1K⊤
iB).

For example, the second (unnormalized) trace term in Eq. 3
and its derivative with respect to f are written as:

tr[KfCKiC] ≈ C(f)
= tr[KfBK

−1
BBK

⊤
fBCKiB [K

i
BB ]

−1K⊤
iBC] (6)

∂C(f)
∂[f ]k

=2[∂KfB ](k,:)·[
K−1

BBK
⊤
fBCKiB [K

i
BB ]

−1K⊤
iBC

]
(:,k)

, (7)

where [A](k,:) denotes the k-th row of A and [∂KfB ]kl cor-
responds to the derivative of kf ([f ]k, bl) = exp(−∥[f ]k −
bl∥2/σ2

f ). The main computational bottleneck in the gra-
dient evaluation is the multiplication K⊤

fBCKiB for each
i = 1, . . . ,m, which takes total O(m× n×K2) time. As
such, the complexity is linear in the number of data points n
and the number of test time features m.

2Readers are referred to [18] for other sparse approximations including
random Fourier features and block-averaged statistic.

3.2. TUPI parameter smoothness

As our algorithm is unsupervised, in practical applica-
tions, we expect users to evaluate different hyperparameter
combinations. Figure 1 shows that this approach is feasible
as the rank accuracy surface with respect to the two parame-
ters is smooth, enabling practical sampling approaches.

4. Additional experimental details

4.1. Dataset details

Multiple Features dataset (MFeat). This contains 6 dif-
ferent feature representations of 2,000 handwritten digits:
Each input digit is represented by F1) 76 Fourier coeffi-
cients, F2) 216 profile correlations, F3) 64 Karhunen-Loève
coefficients, F4) 240 local color averages, F5) 47 Zernike
moments, and F6) 6 morphological features [1]. The target
rank outputs are obtained based on digit class labels. In
the main paper, we use each single feature set F1–F6 as the
baseline features g, while the remaining features are used as
test time features {Hi}5i=1.

Public Figure Faces (PubFig), Shoes, and Outdoor Scene
Recognition (OSR) datasets. PubFig contains 772 im-
ages of 8 people with 11 attributes [10]. The goal is to
estimate rankings on each of the target attributes: Masculine-
looking, White, Young, Smiling, Chubby, Visible-forehead,
Bushy-eyebrows, Narrow-eyes, Pointy-nose, Big-lips, Round-
face. The labels are provided as category-wise comparisons,
i.e., each category (person for PubFig) has a stronger or
weaker presence of certain attributes than other categories.
Shoes dataset contains 14,658 images of 10 attributes and
10 categories [7]: pointy-at-the-front, open, bright-in-color,
covered-with-ornaments, shiny, high-at-the-heel, long-on-
the-leg, formal, sporty, and feminine. OSR contains 2,688
images of 6 attributes from 8 categories: natural, open,
perspective, large-objects, diagonal-plane, and close-depth.
Similar to PubFig, the rank labels for Shoes and OSR are
constructed from pairwise category-wise comparisons.

For PubFig and Shoes, we use GIST features and color
histograms provided by Parikh and Grauman [10] as input
features to construct the initial rankings f I . For OSR, we
construct f I with GIST features from the authors of [7].

For each target attribute, the remaining attributes are used
as the source of test time features. However, our prelim-
inary experiments showed that all target output attributes
are strongly correlated, and so applying TUPI with other
target attributes as test time features leads to almost perfect
results. As such, instead of directly using these ground-truth
attributes, we use the outputs of the corresponding individ-
ually trained rankers. This corresponds to a practical appli-
cation scenario where the estimated rankers are denoised by
using the other rank estimates as test time information.



Figure 1. Accuracy of our algorithm on PubFig (left; attribute 2), OSR (center; attribute 2), and Shoes (right; attribute 5) datasets with respect
to hyperparameters λ (Eq. 3) and σ2

w (Eq. 4) varying over logarithmic intervals.

4.2. Results with absolute accuracies and statistical
significance tests

In the main paper, we show results relative to f I for easier
interpretation of the bar charts. Figure 2 shows the absolute
accuracy results. Further, Table 2 shows tests of statistical
significance of result differences of different algorithms:

• Our algorithm is better than initial predictions f I in
87.18% of cases, and it is not worse in any cases. This
shows the effectiveness of exploiting test time features.

• Our algorithm is statistically significantly better than
Kim et al.’s algorithm in 62.96% of cases, and it is not
worse in any cases.

• Our algorithm is statistically significantly better than
SSL in 66.67% of cases and worse in 33.33% of cases.
The worse cases occurred only on Zap50K, where test
time features are powerful enough for SSL to be better.

• Our algorithm is statistically significantly better than
retraining on test time features in 50% of cases and
worse in 33% of cases. Again, worse cases occurred
only on Zap50K, where test time features are powerful
enough for SSL to be better.

• In comparison with CoConut, our algorithm is better in
64.10% of cases and worse in 2.56% of cases.

Overall, our approach is more useful as an approach in
our setting as it provides better performance on average.

4.3. A simple failure case

We assume that the additional features {Hi} are useful
if they exhibit strong statistical dependence to the underly-
ing ground-truth predictor f∗. However, since we do not
have access to f∗, we instead measure and enforce statis-
tical dependence to the main predictor f(t) that is being
denoised through iterative optimization (Algorithm 1 and

Eq. 3). While our experiments on real-world problems have
demonstrated the effectiveness of this approach, simple fail-
ure cases exist. For example, if all additional features are
identical to the initial predictions, trivially there is no gain.
Table 1 shows slightly more involved cases: Here, on the
MFeat dataset, we gradually increase the number of copies
of initial predictors f I in the original reference sets (each
containing 5 features). When there is only a single copy of
f I included in the reference set, for all features except for F4,
the performance is roughly on par with the case where the
original references are used (fO). However, as the number
of f I copies increases, the accuracy decreased rather rapidly.
Future work should explore the possibilities of automatically
identifying such features.

5. TUPI adaptation of Kim et al.’s algorithm
and CoConut

5.1. Adapting Kim et al. [6]

This method forms predictive distributions from refer-
ence tasks, then penalizes their pairwise Kullback-Leibler
divergence from the target distribution. This implies met-
ric comparison: If a test time feature is the negative of the
perfect prediction, then the KL-divergence will be large and
Kim et al. would penalize it; however, the feature is still
statistically dependent, and our approach would exploit this.

To adapt their method to our setting, if we let their ref-
erence task predictions be new features {Hi}, then this ap-
proach works when the (probability) space of each feature
coincides with the space of predictions Y . This makes their
algorithm applicable only to datasets with one-dimensional
test time features as the predictions made for potentially-
related tasks (e.g., the PubFig, Shoes and, OSR datasets in
the experiments). Figure 2 demonstrates that our general
multi-dimensional test time feature algorithm is a strong al-
ternative to Kim et al.’s approach even in this special setting.
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2Figure 2. Absolute mean accuracies for PubFig, AwA, Shoes, Zap50K, OSR, and InvDyn datasets (higher is better; error bars are standard
deviations). The main paper shows performance relative to f I for easier viewing.

Table 1. MFeat dataset. Ranking algorithm mean accuracy percent,
plus standard deviation in parenthesis, given the F1–F6 features.
f I : The initial predictions.
fO: TUPI with other F-feature sets as test time information.
fFi : fO with other F-feature sets plus i copies of f I as test time
information.

F1 F2 F3 F4 F5 F6

f I
77.85 79.28 75.70 70.88 76.05 77.10
(2.26) (1.23) (2.38) (1.23) (2.66) (1.60)

fO
81.97 81.45 78.31 74.33 78.19 82.25
(2.95) (1.69) (3.13) (5.00) (3.29) (2.09)

fF1
82.81 81.92 79.22 71.86 79.65 82.44
(2.35) (1.84), (2.95) (2.54) (3.20) (1.90)

fF3
80.50 81.34 77.93 71.12 78.20 79.83
(2.16) (1.43) (2.75) (1.64) (2.83) (1.65)

fF5
79.54 80.80 77.17 70.95 77.54 78.76
(2.23) (1.34) (2.54) (1.47) (2.76) (1.53)

fF7
79.24 80.48 76.88 70.92 77.30 78.37
(2.23) (1.29) (2.47) (1.48) (2.71) (1.49)

fF9
79.06 80.31 76.73 70.90 77.15 78.16
(2.23) (1.27) (2.43) (1.46) (2.79) (1.47)

fF11
78.96 80.19 76.65 70.89 77.07 78.05
(2.23) (1.25) (2.41) (1.46) (2.75) (1.47)

5.2. Adapting CoConut [5]

The CoConut framework was developed for co-
classification problems where multiple data instances are
jointly classified. The authors propose to apply a graph
Laplacian-type regularizer via adopting the Cluster Assump-
tion [16] to improve during testing the classifications once
predicted. In general, a graph Laplacian-type regularizer
is defined based on the pairwise similarities of predictions
weighted by the corresponding input feature similarities. In
CoConut, the new regularizer can also be constructed based
on additional features that are available at test time, facili-
tating a TUPI-like scenario. Please note that we adopt the
mathematical notations from our main paper which differ
from the notation of the original CoConut paper [5].

Suppose that we have a set of test data features G =
{g1, . . . ,gn} ⊂ G and our goal is to predict a classification
label vector f = [f1, . . . , fn]

⊤ where the value of each
element fi is assigned from a label set Y = {1, . . . , L}.
Further, we assume that a set of base classifiers {(f I)l :
G → R}Ll=1 are constructed such that (f I)l(g) provides a
confidence that the sample point g belongs to class l. Based
only on the base classifiers, the initial class label prediction
yIi for the i-th test data point can be made as

yIi = argmax
l=1,...,L

(f I)l(gi). (8)



CoConut improves this initial predictions yI =
[y1, . . . , yn]

⊤ by minimizing the following energy3

O′(f) =−
n∑

i=1

L∑
l=1

1[fi = l](f I)l(gi)

+ λC
n∑

i=1

1

|Ni|
∑

gj∈Ni

wij1[fi ̸= fj ], (9)

where 1[·] is the indicator function, λC ≥ 0 is the regulariza-
tion hyperparameter, and Ni is the neighbors of gi in G that
Khamis and Lampert [5] defined as the k-nearest neighbors
(NNs). The first term ensures that the final solution does not
deviate significantly from the initial class assignments yI ,
while the second term enforces smoothness in the final solu-
tion measured in the pairwise similarities of output values
weighted by {wij}. The weight wij is defined based on the
pairwise similarity of the input features gi and gj :

wC
ij = exp

(
−
d2G(gi − gj)

(σC)2

)
, (10)

where d2G is a distance measure on G and σC is a hyper-
parameter. When an additional set of test time features
H = {h1, . . . ,hn} ⊂ H is provided, d2G can be replaced by
d2G +d2H taking both features into account. This corresponds
to a TUPI-like usage of test time features. The discrete opti-
mization problem of minimizing O′ can be approximately
solved based on convex relations. The authors proposed to
tune hyperparameter λC based on the training set used for
building the base classifiers {(f I)l}Ll=1. This requires the
training labels in testing; we will discuss this in the ‘tuning
hyperparameters’ paragraph of the next subsection.

CoConut adaptation applied to Relative Attributes rank-
ing. As the original CoConut optimization problem (Eq. 9)
was designed for discrete classification problems, it needs
to be adapted before it can be applied to Relative Attributes
(RA) ranking problems where the outputs of the base pre-
dictors take continuous values. First, it should be noted
that when {fi} and {(f I)l} take continuous values, count-
ing the occurrence of equal values via the indicator evalu-
ations (1[·]) in Eq. 9 leads to zero values in the first term
of Eq. 9 in general. Instead, we reinterpret the first term
as the measure of deviation (per test instance) between the
hypothesized solution fi and the initial base prediction f Ii :
f Ii := maxl=1,...,L(f

I)l(gi) is the confidence of predicting
the label yIi for gi [5] in the original classification setting
(see Eq. 8). Instantiating this interpretation in the real-valued

3In O′, the initial predictions yI are only indirectly taken account via
{fl(gi)}.

prediction case, we cast the first term in O′ into

O′
1(f) =

n∑
i=1

(f Ii − fi)
2 (11)

measuring the deviation between f = [f1, . . . , fn]
⊤ and

f I = [f I1 , . . . , f
I
n]

⊤. Unlike the (L-class) classification prob-
lems initially considered by Khamis and Lampert [5], we do
not have L different base predictors (one per class). There-
fore, a single base predictor f I is used.

Now, relaxing the equality constraints in the second regu-
larization term of O′ into a measure of continuous squared
deviations, and adopting the k-NN structure for {Ni} (with
kC neighbors) as used in the original CoConut setting, the
second term can be restated as

O′
2(f) =

λC

kC
f⊤Lf , (12)

where L is the graph Laplacian as L = DC −WC , and

WC
ij =

{
wC

ij if gj ∈ Ni (see Eq. 10)
0 otherwise.

(13)

and [DC ] is a diagonal matrix of row sums ofWC : [DC ]ii =∑
j [W

C ]ij . O′
1 ensures that the final solution does not devi-

ate significantly from f I , and O′
2 contributes to improving

the final solution by enforcing its spatial smoothness mea-
sured via the Laplacian L.

Tuning hyperparameters. In the original CoConut set-
ting, the authors proposed to tune the hyperparameter λC
(Eq. 9) based on performance on the training set that is used
to train the base predictors {(f I)l}. This requires access to
training labels at test time. However, in our TUPI scenario,
a large set of labeled training data points is not available:
If such training labels are available, a better alternative to
TUPI is often simply to re-train the baseline predictor f I

with the original G and the test time features H . Indeed, in
our preliminary RA experiments using deep neural networks
as baselines, this constantly led to better performance than
our TUPI algorithm as well as our CoConut adaptation.

Furthermore, we also observed in preliminary experi-
ments that for the problem of estimating continuous predic-
tions in the RA setting, tuning the CoConut hyperparameters
in this way suffered from ovefitting and it leaded to much
worse results than the original predictors f I .

Therefore, in our experiments provided in the main pa-
per, we tune the hyperparameters based on separate valida-
tion sets. The hyperparameters include kC for k-NNs, σC

(Eq. 10), and λC . We adaptively decided σC as twice the
mean distance within each Ni as suggested by Hein and
Maier [4]. The other two parameters kC and λC are tuned
based on the validation accuracies. In the original CoConut



framework, the authors tuned only one parameter λC and the
selection of kC was not discussed. We observed that the best
choice of kC differs across different datasets, and the impact
of varying this value on the final results is substantial. Thus,
we concluded that kC also needs to be tuned per dataset.

CoConut adaptation summary. We minimize the energy

O′(f) = ∥f − f I∥2 + λC

kC
f⊤Lf , (14)

where L is the graph Laplacian calculated based on local
k-nearest neighbors (with k = kC) in the test time feature
space. The first term in O′ ensures that the final solution
does not deviate significantly from f I while the second term
contributes to improving the final solution by enforcing its
spatial smoothness measured via the Laplacian L. The two
hyperparameters λC and kC are tuned based on validation
accuracies similarly to our algorithm.

5.3. Combining CoConut and our algorithm

We observed in the experiments that, overall, our algo-
rithm provides higher accuracy than CoConut (Fig. 2). At
the same time, the specific results on the PubFig dataset
demonstrate that CoConut and our algorithm have comple-
mentary strengths: Our algorithm generates the best results
in attributes 2, 3, 5, and 8–11 while CoConut is the best on
attributes 1, 4, 6, and 7. For these attributes, we observe
noticeable accuracy differences in the corresponding results
of CoConut and our algorithm.

As such, we developed two new algorithms which com-
bine the benefits of CoConut and our algorithm. Our first
combination attempt ‘CoConut+Ours1’ algorithmically com-
bines the two. This algorithm minimizes a new energy O′′

which combines the energy functional of our algorithm with
the graph Laplacian regularizer of CoConut:

O′′(f ; t) = O(f ; t) +O′
2(f). (15)

The resulting new algorithm leverages the global statistical
dependence present among multiple features (via our de-
noising strategy) as well as the local spatial smoothness of
the predictor variables (via the Coconut regularizer). Fig-
ure 3 shows the results: Indeed, combining these benefits,
CoConut+Ours1 often generates the best results (attributes
3–7, 9–11). More importantly, even when it is not the best,
the corresponding accuracy is close to the best except for the
third attribute where our original algorithm is clearly better.
However, a drawback of this approach is that to obtain these
results, it required tuning four hyperparameters (λ and σ2

w

from our algorithm and λC and kC from CoConut), which
is often prohibitively expensive in practical applications.

Our second algorithm is computationally affordable:
CoConut+Ours2 selects either of the outputs of CoConut and

our algorithm based the validation accuracy: For both algo-
rithms, the predictions are independently generated and these
predictions with higher validation accuracy are selected per
prediction set as the final outputs. Figure 3 demonstrates that
while this approach is overall worse than CoConut+Ours1
and often even worse than either of the CoConut or our al-
gorithm, it still delivers performance that does not deviate
significantly from the best results among the CoConut and
our algorithm per attribute. This shows that CoConut+Ours2
facilitates trading the hyperparameter tuning complexity of
CoConut+Ours1 with the final prediction accuracies.

6. Additional future work
In our application scenario, we assumed no access to the

underlying ranking function f and focused on evaluating
fO on a fixed set of points G. When an explicit functional
form of fO is required, e.g. when one wishes to apply fO

to new test points gnew /∈ G, two scenarios are possible: 1)
If we remove the assumption that the parametric form of
f is unknown, one could apply our algorithm to tune the
parameter vector w of fw. Since our objective function O
(Eq. 3) is smooth, this approach is straightforward when fw
is continuously differentiable with respect to w (which is the
case for DNNs, RSVMs, and many other predictors); 2) If f
form remains unavailable, one could train a smooth regressor
fO on the large set of inputs G using the corresponding non-
parametric estimates fO as labels.
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Table 2. Results of t-test with α = 0.95 for relative accuracy differences of different algorithms. 1 and -1: statistically significantly positive
and negative, respectively and 0: statistically insignificant.
f I : The initial predictions.
fK : Kim et al.’s algorithm [6].
fS : Semi-supervised learning on h.
fR: Retrain on h.
fC : CoConut [5].
fO: Our TUPI algorithm.

Dataset Attr. fK − f I fS − f I fR − f I fC − f I fO − f I fO − fK fO − fS fO − fR fO − fC

Pubfig

1 0 N/A N/A 1 1 1 N/A N/A 0
2 0 N/A N/A 0 0 0 N/A N/A 1
3 0 N/A N/A 1 1 1 N/A N/A 0
4 0 N/A N/A 1 1 1 N/A N/A 0
5 0 N/A N/A 1 1 1 N/A N/A 0
6 0 N/A N/A 1 1 1 N/A N/A 0
7 1 N/A N/A 1 1 1 N/A N/A 0
8 1 N/A N/A 0 1 1 N/A N/A 1
9 1 N/A N/A 1 1 0 N/A N/A 0
10 1 N/A N/A 1 1 1 N/A N/A 1
11 1 N/A N/A 0 1 1 N/A N/A 1

InvDyn

1 N/A -1 -1 0 0 N/A 1 1 0
2 N/A -1 -1 0 0 N/A 1 1 0
3 N/A -1 -1 0 0 N/A 1 1 1
4 N/A -1 -1 0 1 N/A 1 1 1
5 N/A -1 -1 0 1 N/A 1 1 1
6 N/A -1 0 0 1 N/A 1 1 1
7 N/A -1 1 0 1 N/A 1 0 1

AwA 1 N/A 0 0 0 1 N/A 1 0 0

Shoes

1 0 N/A N/A 0 1 1 N/A N/A 0
2 1 N/A N/A 0 1 0 N/A N/A 1
3 1 N/A N/A 0 1 1 N/A N/A 1
4 0 N/A N/A 1 1 1 N/A N/A 0
5 1 N/A N/A 0 1 0 N/A N/A 1
6 1 N/A N/A 0 1 1 N/A N/A 1
7 0 N/A N/A 0 1 1 N/A N/A 1
8 1 N/A N/A 0 1 0 N/A N/A 1
9 1 N/A N/A 0 1 0 N/A N/A 1
10 1 N/A N/A 0 1 1 N/A N/A 1

OSR

1 0 N/A N/A 0 1 0 N/A N/A 0
2 1 N/A N/A 0 1 0 N/A N/A 1
3 1 N/A N/A 0 1 0 N/A N/A 1
4 0 N/A N/A 0 1 1 N/A N/A 1
5 1 N/A N/A 0 1 0 N/A N/A 1
6 0 N/A N/A 1 1 1 N/A N/A 1

Zap50K

1 N/A 1 1 1 0 N/A -1 -1 -1
2 N/A 1 1 0 1 N/A -1 -1 1
3 N/A 1 1 0 1 N/A -1 -1 1
4 N/A 1 1 0 1 N/A -1 -1 1


