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Appendix 

A. Motion vector warping accuracy 

In this section, we verify the accuracy of warped features by 

motion vectors. We define the error rates  𝑒  between the 

warped feature 𝑊(𝑓𝑠
𝑡)  by motion vector and the original 

feature 𝑓𝑠
𝑡+1 extracted from an actual P-frame using a pre-

trained CNN as: 

 𝑒 = 
1

𝑛
∑ |𝑓𝑠

𝑡+1 − 𝑊(𝑓𝑠
𝑡)| × 100 (12) 

 

where 𝑛 is size of feature dimension.  

Figure 1 illustrates comparison results between warped 

features and the original feature. The first example in Figure 1 

shows the case when motion vectors are relatively accurate 

due to homogeneous motions of foreground objects. In this 

case, the error rate is 0.52 %, which shows quite high accuracy.   

On the other hand, the second example in Figure 1 shows an 

opposite case when motion vectors are relatively inaccurate. 

In this case, the error rate is 12.47%. The residue increases 

with an incorrect motion vector. As shown in Eq. (7) of the 

paper, 𝛼  obtained by residue reduces the influence of the 

attended motion features 𝐺𝑚 by giving lower weight factors. 

In this manner, even though the proposed algorithm cannot use 

very precise motion vectors, it can tackle error propagation 

and generate the final appropriate feature by controlling 𝛼.  

 

 

Figure 1 Visualization of motion vectors and features. 

 

B. Comparison with algorithms of other tasks using 

compressed domain features  

B.1 Action recognition task 

We examine the performance of our compressed-domain 

features applied to an action recognition task. We show a 

comparative study with OF-CNN [R1], DTMV-CNN [R2], 

CoViAR [38], and DMC [29] in Table 1. The compared 

methods are developed for the action recognition although our 

features are originally developed for a video QA task. DTMV-

CNN, CoViAR, and DMC use compressed-domain features as 

in the proposed technique. DTMV-CNN and CoViAR use 

refinement MVs instead of optical flow. DMC utilizes MVs 

and residue to increase an accuracy using discriminator. These 

all methods directly use MVs or rectified MV as an input of 

CNNs. OF-CNN applies two stream networks of which inputs 

are frame and optical flow. 

To change the main task, VQAC(Base) removes the question 

attention modules in Eq. (3), (4), (5) and uses 𝑓𝑚
𝑡   and 𝑓𝑠

𝑡 

instead of 𝐺𝑚
𝑡  and 𝐺𝑠

𝑡, respectively, in Eq. (7). Moreover, we 

replace the fusion and decoder layers with an action classifier. 

We use the classifier of DMC (Resnet). The main difference 

with previous methods is that we use MVs to warp the I-frame 

feature and temporally combine features.  

Table 2 Performance comparisons in HMDB51 [R3] 

HMDB51 
OF-

CNN 

DTMV

-CNN 
CoViAR DMC Our 

Acc. 60.0 55.3 59.1 62.8 60.8 
 

It is noted that, for this task, the question feature map and the 

question-guided attention have been disabled because our 

feature is not originally designed for action classification. 

Nevertheless, we achieve 60.8 % accuracy. The performance 

of the proposed algorithm is approximately the same as OF-

CNN and approximately 2.0 % lower than DMC. The result 

implies that our compressed-domain video features exploit 

MVs and residues efficiently not only for the video QA task 

but also for motion-relevant CV tasks.  

B.2 Video QA task 

In this section, we compare the performance of an action-

recognition network in video QA to consider the appropriate 

integrated networks. We integrate DMC [29] to HME, referred 

to as DMC(HME), by replacing a 3D-CNN feature extraction 

module with features from a MV classifier. 

Table 2 Action -> QA on MSVD, MSR-VTT 

 MSVD MSR-VTT Youtube2Text 

HME 33.7 33.0 80.8 

DMC 

(HME) 
31.9 32.3 78.4 

VQAC 

(HME) 
37.8 35.7 82.1 

 

DMC(HME) is even worse than HME about 1.8 %, 0.7 % and 
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5.8 % on MSVSD, MSR-VTT, and Youtube2Text, respect-

tively. DMC was originally developed for speeding up a video 

action recognition. Therefore, the DMC motion feature is less 

suitable than the original motion feature from C3D on HME. 

Our integrated model outperforms in three datasets in Table 2. 

This experimental result demonstrates that our integrated 

network using the compression-domain features for a video 

QA task is designed properly. In contrast, the action 

recognition networks are designed to capture a dominant 

motion of a video. However, the experimental results 

demonstrated that such motion features are not suitable for the 

video QA task.  

C. Qualitative performance evaluation  

We conduct a bootstrap sampling five times and report means 

𝜇  and standard deviations 𝜎  to show a fairly standard 

practice in Table 3. 

Table 3 Results of a bootstrap sampling. Only AMU, COMEM, and 

HME provided available codes in the pampered methods. 

MSVD dataset 𝜇(𝜎) 

AMU VQAC(B) COMEM HME VQAC(H) 

31.4 

(0.50) 

31.0 

(0.37) 

31.3 

(0.28) 

32.9 

(0.14) 

37.3 

(0.27) 

 

We additionally evaluate our algorithm on Youtube2Text QA 

dataset [44] answering a multiple-choice problem to reveal 

different aspects of tested methods other than MSVD-QA and 

MSRVTT-QA.  

Table 5 Visualization of motion vectors and features. 

Method 

Youtube2Text QA (Multi-choice) 

What Who Others All 

(2489) (2004) (97) (4590) 

r-ANL 63.3 36.4 84.5 52.0 

HME 83.1 77.8 88.6 80.8 

VQAC(Base) 72.7 74.9 76.3 77.5 

VQAC(HME) 79.1 85.3 90.3 82.1 
 

The Table 4 presents the performance comparisons with r-

ANL [44] and HME [12]. It is demonstrated that VQAC(Base) 

increases the accuracy of approximately 25.5% than r-AML. 

Moreover, VQAC(HME) provided a superior performance to 

HME. 

We attempt to replace on VQAC(Base) with those from 

Resnet152, VGG16, and VGG19 and observe the performance 

is 31.5%, 31.4% and 31.5%, respectively. It displays that the 

model provides reliable performance with different spatial 

features. 

We observe that overall performance is degraded when the I-

period is larger (i.e. a smaller number of I-frames in a 

sequence and less) as shown in Table 6. The performance of 

dynamic videos is degraded more rapidly in both models, as 

expected. 

Table 6 Results with various I-periods in MSVD QA. A video is 

categorized to a dynamic set (D) if noticeable motion changes are 

larger than 3. Otherwise, it is divided to a homogenous set (H). 

I period 16 32 48 64 

VQAC(Base) 

H/D 

31.6 / 

31.5 

30.2 / 

29.3 

29.8 / 

26.6 

24.5 / 

20.3 

VQAC(HME) 

H/D 

37.8 / 

37.7 

37.7 / 

37.1 

36.4 / 

33.7 

31.3 / 

27.4 

 

D. Quantitative performance evaluation 

In this section, quantitative performance is further evaluated. 

We show exemplar cases where the scene of the video changes 

several times or the motion of the object in the video is large 

in Figure 3. For example, a video in the third row shows two 

people dancing violently on the grass. When the question 

“What are two people doing?” is given, previous algorithms 

predict the wrong answer, "play," but the proposed method 

predicts the right answer, "dance." 

 

Figure 3 Qualitative performance evaluation in MSVD QA dataset. 

 

E. Visualization of the question guided attention 

The first and second example in Figure 4 illustrates that if the 

correct answer is about an object, the active area points the 

object correctly. For example, given the question "What is 

running around ballooning on floor?", the attention area is 

activated along with the “Dog”. The third example in Figure 4 

shows that if the correct answer is about action, the attention 

area appears in an overall region of the image. 
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Figure 4 Visualization of the question guided attention 𝑮𝒔
𝒕  in 

MSVD QA dataset. 
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