
Appendix

A. Experimental Details
A.1. Architectures

For our GAN model see the detailed architectures of the
generator and discriminators in Tables 4 and 5 respectively.

Table 4. Architecture of the generator G. All GraphTripleConv
and Upsample-Refine blocks include Batch Norm (BN) [30] fol-
lowed by ReLU/LeakyReLU. ñ, m̃ are the number of nodes and
edges in a batch; bs is batch size.
Layer Nodes Edges

input-1 (embedd. layer) ñx200 m̃x200
concat. with boxes B ñx204 m̃x200
GraphTripleConv-1 204x64 608x64
GraphTripleConv-2 64x64 192x64
GraphTripleConv-3 64x64 192x64
GraphTripleConv-4 64x64 192x64
GraphTripleConv-5 64x(32·7·7) 192x64
output-1 ñx32x7x7 −

conv1 32x64
conv2 64x64
output-2 ñx64x7x7
input-2: vis. features V ′ ñx512x7x7
concatenate output-2, input-2
conv3 (64+512)x64
output-3 ñx64x7x7

input-3: boxes B ñx4
Boxes2Layout build feature maps based on output-3 and B
output-4 bsx64x37x37

Global feature maps
Upsample-Refine-1 64x128
Upsample-Refine-2 128x256
Upsample-Refine-3 256x512
conv1x1 512x512
output-5 (Ĥ) bsx512x37x37

RoIAlign extract node, edge feat. based on output-5 and B

output-6 (V̂ , Ê) ñx512x7x7 m̃x512x7x7

In the generator, GraphTripleConvNet2, Boxes2Layout3,
Upsample-Refine4 are borrowed from the sg2im implementa-
tion of [31]. For the baseline IMP++ model we use a publicly
available implementation5 with a default architecture and
the graph-normalized loss [36] from another public code6.

A.2. Hyperparameters and Tasks

SGCls. We use batch size bs = 24 and lr = (1e−3)×bs.
Training was done on NVIDIA V100 with 32GB of GPU
memory or RTX6000 with 24GB. We train all models for

2GraphTripleConvNet: https://github.com/google/
sg2im/blob/master/sg2im/graph.py

3Boxes2Layout: https://github.com/google/sg2im/
blob/master/sg2im/layout.py

4Upsample-Refine: https://github.com/google/sg2im/
blob/master/sg2im/crn.py

5IMP+/IMP++: https://github.com/rowanz/
neural-motifs

6Graph-normalized loss: https://github.com/bknyaz/sgg

Table 5. Architectures of the discriminators D. Following [56],
the discriminators are regularized by having a fully-convolutional
architecture with four layers interleaved with ReLU. All convolu-
tions are 3x3 without padding and normalized with Spectral Norm
(SN) [50]. ñ, m̃ are the number of nodes and edges in a batch; bs is
batch size; |C| = 151, |R| = 51 - number of object and predicate
classes including the “background” (no object, no edge) class [82].

Layer Dnode Dedge Dglobal

input ñx(512+151)x7x7 m̃x(512+51)x7x7 bsx512x37x37

real feature/labels V,O E,R H

fake feature/labels V̂ , Ô Ê, R Ĥ

SN-conv1 (512+151)x256 (512+51)x256 512x256
nonlinearity ReLU ReLU LeakyReLU
pooling − − Average-2

SN-conv2 256x128 256x128 256x256
nonlinearity ReLU ReLU LeakyReLU
pooling − − Average-2

SN-conv3 128x64 128x64 256x128
nonlinearity ReLU ReLU LeakyReLU
pooling − − Average-2

SN-conv4 64x1 64x1 128x1

output ñx1 m̃x1 bsx1

a fixed number of 20 epochs according to [36]. PredCls
results are obtained following a standard procedure [82]
of reusing the SGCls model and setting object classes to
ground truth. We use PyTorch 1.5+ to train all models. The
difference between the graph constraint and no constraint
metrics is discussed in [82, 36]. We also report the results
on the SGGen/SGDet task in § B.6. However, we highlight
that SGGen/SGDet is not the focus of our work and we do
not expect large improvements, since we do not update the
detector on generated features.

A.3. Implementing IMP with TDE

To apply TDE to a SGG model, the model is assumed
to have a contextual layer, such as LSTM in Neural Motifs
or TreeLSTM in VCTree, conditioned on object predictions
from the object detector. This contextual layer to some
extent captures the frequency bias in the dataset during
training. So, the main goal of TDE is to debias this
contextual layer at test time. Since, IMP does not have such
a conditional contextual layer and, consequently, is less bi-
ased, applying TDE is both (1) unclear implementation-wise
and (2) has questionable benefits from the conceptual point
of view. It is still possible to use Total Effect (TE) according
to Eq. 6 in [67], which we report in the main text. But, there
is almost no gain w.r.t. IMP in this case.

B. Additional Experimental Results

All presented results in this work are on Visual
Genome [38] (split of [74]).

1



Table 6. Results of GRAPHN with topk = 5 (same as reported in the main text) compared to NEIGH with different values of topk. The
models are based on IMP++ [82, 36].

MODEL
ZERO-SHOT RECALL 10-SHOT RECALL 100-SHOT RECALL ALL-SHOT RECALL

SGCls PredCls SGCls PredCls SGCls PredCls SGCls PredCls SGCls-mR

GAN+GRAPHN, α = 2 9.89±0.15 28.90±0.14 21.96±0.30 43.79±0.27 41.22±0.33 69.17±0.24 50.06±0.29 78.98±0.09 27.79±0.48

GAN+GRAPHN, α = 5 9.62±0.29 29.18±0.33 22.24±0.11 43.74±0.10 41.39±0.26 69.11±0.05 50.14±0.21 78.94±0.03 27.98±0.23

GAN+GRAPHN, α = 10 9.84±0.17 28.90±0.46 22.04±0.33 43.54±0.36 41.46±0.15 69.13±0.24 50.10±0.23 79.00±0.09 27.68±0.37

GAN+GRAPHN, α = 20 9.65±0.15 28.68±0.28 21.97±0.30 43.64±0.20 41.24±0.08 69.31±0.17 49.89±0.28 78.95±0.04 27.42±0.36

GAN+NEIGH, topk = 2 9.49±0.21 28.58±0.40 21.72±0.23 43.62±0.05 41.04±0.26 69.07±0.09 49.64±0.29 78.94±0.11 27.33±0.41

GAN+NEIGH, topk = 5 9.38±0.25 28.68±0.40 21.75±0.25 43.45±0.14 41.05±0.49 68.94±0.14 49.75±0.30 78.94±0.10 27.05±0.15

GAN+NEIGH, topk = 10 9.58±0.22 28.63±0.39 21.86±0.23 43.77±0.15 41.14±0.30 69.03±0.09 49.86±0.38 78.89±0.01 27.41±0.51

GAN+NEIGH, topk = 20 9.65±0.04 28.57±0.06 21.82±0.17 43.28±0.21 40.98±0.30 69.01±0.14 49.68±0.28 78.92±0.05 27.17±0.12

Table 7. Results using models based on Neural Motifs++ [82, 36].

MODEL
ZERO-SHOT RECALL 10-SHOT RECALL 100-SHOT RECALL ALL-SHOT RECALL

SGCls PredCls SGCls PredCls SGCls PredCls SGCls PredCls SGCls-mR

Neural Motifs++ 6.81±0.10 16.91±0.31 21.07±0.03 44.75±0.12 40.16±0.10 73.58±0.14 48.30±0.06 82.17±0.09 25.48±0.15

Neural Motifs++, GAN+GRAPHN 8.06±0.13 23.36±0.08 20.99±0.04 45.98±0.04 39.92±0.05 73.97±0.13 48.05±0.12 82.89±0.08 25.59±0.02

Table 8. Comparison of GAN models using GT versus predicted bounding boxes and ORACLE-ZS perturbations.

MODEL
ZERO-SHOT RECALL 10-SHOT RECALL 100-SHOT RECALL ALL-SHOT RECALL

SGCls PredCls SGCls PredCls SGCls PredCls SGCls PredCls SGCls-mR

GAN+ORACLE-ZS, B̂ = B 10.11±0.34 29.27±0.10 22.05±0.38 43.78±0.09 41.38±0.50 69.06±0.16 50.19±0.36 79.00±0.08 27.91±0.56

GAN+ORACLE-ZS Ĝ + test B̂ 10.52±0.31 29.43±0.42 21.98±0.39 43.03±0.13 41.12±0.19 68.73±0.17 50.05±0.35 78.65±0.09 27.52±0.46

GAN+ORACLE-ZS Ĝ, pred. B̂ (§ B.3) 9.92±0.13 28.93±0.63 21.67±0.36 42.65±0.47 40.96±0.48 68.23±0.28 49.80±0.50 78.55±0.14 27.22±0.39

B.1. Topk Semantic Neighbors

In the main text, we used topk = 5 for GRAPHN and
topk = 10 for NEIGH to allow for the same level of di-
versity of perturbations in both strategies. To make sure
GRAPHN outperforms not just because of a better choice
of topk, we report results of NEIGH for more values in Ta-
ble 6. Overall, different values of topk do not allow NEIGH
to achieve the same level of performance as GRAPHN.

B.2. BERT-based Evaluation

We show an example of BERT-based evaluation in Fig. 11.
In this example, we retrieve the score of 9.8 for the token
‘shorts’ which was masked out in the query. To estimate the
overall likelihood of the scene graph we mask out only one
node per graph for faster evaluation, which can explain a
high variance of SG quality. Aggregating the scores for all
nodes should lead to better estimates.

B.3. Learning to Predict Bounding Boxes

In the main text, in our generative pipeline for simplicity
we assumed the layout (bounding boxes B) is unchanged
after perturbing the associated scene graph: B̂ = B. Here,
we describe and report results of the alternative version,
where the boxes B̂ are predicted by some model f given
a perturbed scene graph B̂ = f(Ĝ). We borrow the same
principle as we used for producing Ĝ: instead of producing
B̂ from scratch (without relying on B), we perturb ground
truth B, so B̂ = f(Ĝ, B). This is an easier task, since we
only need to predict bounding boxes for part of the scene

uniform: 9.8  
shorts: 9.8  
jersey: 9.4  
shirt: 9.0  
green: 8.6  
helmet: 8.5  
pants: 8.3  
hat: 8.0  
cap: 7.9  
uniforms: 7.9  
...
apron: 6.6 

watchingball

shorts

crowd

player

to the left of

wearing

With Context

shorts: 9.2  
helmet: 9.0  
uniform: 8.6  
socks: 8.6  
cap: 8.5  
pants: 8.4  
jersey: 8.2  
green: 8.1  
shoes: 8.0  
glasses: 8.0  
...
jeans: 6.4

No Context

shorts: 9.0  
jersey: 8.3  
uniform: 8.2  
green: 8.1  
suit: 7.8  
helmet: 7.6  
towel: 7.4  
black: 7.4  
bikini: 7.3  
shoes: 7.3  
... 
sandals: 5.9

With Different 
Context

field

[CLS] player wearing 
[MASK]. [SEP]

[CLS] player wearing 
[MASK], crowd 

watching beach, player 
to the left of volleyball, 
sand on beach. [SEP]

[CLS] player wearing 
[MASK], crowd 

watching field, player to 
the left of soccer ball, 
grass on field. [SEP]

grasson

BERT 
query

Top-10 
tokens

Top-30 
token

Figure 11. Example of BERT-based evaluation. The evaluation in
a dashed rectangle is the one we used in the paper. The other two
options are shown for comparison. ‘No context’ returns high scores
for implausible tokens, such as ‘glasses’. Using the context is
important for more correct evaluation, while changing the context
affects the scores accordingly. The scene graph is taken from
original Visual Genome [38] for visualization purposes.

graph. To achieve that, we train a simple graph convolution
network (GCN) to predict a single bounding box b̂i given
the rest of the layout similar to autoregressive models: b̂i =
f(G, B, i), where the input coordinates of the i-th object
in B have values bi = [−1,−1,−1,−1] (Fig. 12). Our f
is similar to the GCN in our GAN pipeline and is based
on GraphTripleConv, but has 3 layers with 64 hidden units
and an additional MLP which predicts 4 coordinates of the
bounding box. The model is trained with a margin l1 loss:
Lbox = min(0.5S,max(0.05S, |b̂i − bi|1)), where S is the
maximum box coordinate. The idea behind this loss is to
avoid having too large or too small penalties making the
training more stable given that there is no single correct

2



wave

surfboard

person
GCN

person

surfboard

on

near

on

wave predicted box

GT box

Loss LBox

xy =
[-1,-1,-1,-1]

Figure 12. Overview of our model learning to predict bounding
boxes, which is used only to report results in the last row of Table 8.

Table 9. Evaluation of the bounding box prediction model. FD is
the Fréchet distance (lower is better). IoU denotes percentage of
times the intersection over union between the predicted and GT
box is ≥ 50% (higher is better).

MODEL
FD IoU (%)

test/test-zs test/test-zs

No GCN, unconditional (sample GT) 0.001 / 0.001 1.8 / 2.0
GCN, predict bi (corrupted label in G) 0.019 / 0.034 2.8 / 2.2
GCN, predict bi 0.018 / 0.037 12.9 / 6.3
GCN, GT bi 1e−4 / 3e−4 100 / 100

Figure 13. PCA-projected distributions of GT and predicted bound-
ing boxes of the test (left) and test zero-shot (right) sets.

prediction in this task (i.e. besides the GT there can be many
other plausible coordinates).

During training and for evaluation (Table 9), we randomly
(uniformly) sample a single object in a scene graph and
predict its coordinates given other bounding boxes and a SG.
After the model is trained, we sequentially apply it only to
perturbed nodes keeping the boxes of non-perturbed nodes
unchanged. To isolate the effect of perturbation methods,
we evaluate this model using ORACLE-ZS (Table 8).
Surprisingly, this model performs worse on all metrics
compared to both keeping the layout unchanged and using
test bounding boxes.

We estimated the quality of the bounding boxes predicted
by our GCN (Table 9). We found that the model respects
the conditioning: results of IoU are significantly better com-
pared to the case when we simply sample GT boxes from a
distribution for a given class (ignoring SG and other boxes)
or when we condition the model on a corrupted (random)
label. However, we found that the model performs signifi-
cantly worse when is fed with ZS compositions. In particular,
the distribution appears to be more concentrated around the
mean in such cases (Fig. 13). This might explain relatively
poor SGG results when we attempt to use the box prediction
model in combination with ORACLE-ZS perturbations. Fur-
ther research is required to resolve the challenges of reliably
predicting the layout for rare compositions similarly to [8].

elephant beachwalking
on

elephant beachon

on in
wa

lk
in

g 
on

wa
lk

in
g 

in
ne

ar
st

an
di

ng
 o

n
ea

tin
g of at

al
on

g0.0
0.2
0.4
0.6

So
ftm

ax
 sc

or
e

Unweighted scores
Weighted scores

Figure 14. Example of the prediction for a zero-shot triplet. Weight-
ing predicate scores increases the score of more descriptive predi-
cates such as ’walking on’ compared to ’on’, improving mR results,
which aligns with [67].

28 30 32 34 36 38 40
R@100

10

12

14

16

m
R@

10
0

28 30 32 34 36 38 40
R@100

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

zs
R@

10
0

10 12 14 16
mR@100

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

zs
R@

10
0

10 12 14 16
mR@100

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

zs
R@

10
0

NM vs NM+TDE
Baseline vs Baseline×wx

GAN vs GAN×wx

Figure 15. Trade-off between different metrics (R, mR and zsR)
in the SGCls task depending on the strength (x = [0, 1, 2]) of
weighting predicate scores (×wx) or using TDE [67].

B.4. Predicate Reweighting and Mean Recall

[67] showed that mean (over predicates) recall is rela-
tively easy to improve by standard Reweight/Resample meth-
ods, while ZS recall is not. To further analyze this and high-
light the challenging nature of compositional generalization
(targeted in this work) as opposed to predicate imbalance
typically targeted in some previous work, we simplify and
extend the Reweight idea from [67]. In particular, we com-
pute the frequency fr of each predicate class r in the training
set. Then, given a trained SGG model, we multiply softmax
scores of predicates by wx = 1/fx

r , where x controls how
much we need to balance predicate scores (Fig. 14). We
consider x = [0, 1, 2, 3], denoting models as ×wx, where
x = 0 corresponds to not changing predictions (our default
setting). The advantage of our post-hoc calibration com-
pared to Reweight [67] is that it does not require retraining
the model and allows us to balance performance on frequent
and infrequent predicates by carefully choosing x.

The results indicate a severe trade-off between the mean
and all-shot recalls (Table 10). We can achieve very compet-
itive mean recall results by simply using large x. However,
this dramatically hurts the all-shot recall, potentially leading
to invalid predictions, such as “cup walking on table” instead
of “cup on table”, as discussed in [76]. Overall, given the
three SGG metrics (R, mR and zsR), we observe that (R, mR)
and (R, zsR) are two conflicting pairs of metrics, while (mR,

3



Table 10. Tuning for mean (over predicates) recall versus all-shot
recall using our GAN+GRAPHN model (the graph constraint evalu-
ation). Underlined are top results among the variants of our model.
†The results in [67] are obtained with a more advanced detector
and, thus, are not directly comparable.

MODEL
MEAN RECALL ALL-SHOT RECALL
SGCls PredCls SGCls PredCls

GPS-net [44] 12.6 21.3 40.1 66.9
NM† [67] 8.5 14.6 39.9 66.0
NM+TDE† [67] 14.9 25.5 29.9 46.2
PCPL [76] 19.6 35.2 28.4 50.8

No weighting (×w0) 10.1±0.2 15.7±0.3 38.1±0.1 62.3±0.2

×w1 14.3±0.2 22.1±0.3 35.2±0.1 56.9±0.3

×w2 17.0±0.1 26.3±0.1 26.4±0.4 42.5±0.2

×w3 18.3±0.1 28.6±0.2 17.2±0.1 27.1±0.2

zsR) have some correlation (Fig. 15). Clearly, the discussed
metrics measure different properties of a given SGG model.
In this work, we measure compositional generalization and
therefore focus on zero-shot (and closely related few-shot)
recall as appropriate metrics for that particular task.

B.5. Training the Baseline Longer

In our GAN model we have two loss terms (LCLS,LREC)
that update the model F , which can be considered as having
two times more updates compared to the baseline, and so
can be an implicit advantage. We investigated if the baseline
model can improve itself if it is updated two times more. Our
results in Table 11 suggest that the model starts to overfit
leading to poor results on all metrics except mean recall. This
might indicate that a stronger regularization is required for
the baseline trained longer. Our GAN losses can be viewed
as such a regularizer leading to better generalization results.

Table 11. Effect of training the baseline model longer. Metrics are
R@100 for SGCls and R@50 for PredCls (no graph constraint).

MODEL
ZERO-SHOT MEAN RECALL ALL-SHOT

SGCls PredCls SGCls PredCls SGCls PredCls

Baseline (IMP++) 9.3±0.1 28.1±0.1 27.8±0.1 33.7±0.3 48.7±0.1 77.5±0.1

Baseline, ×2 updates 8.2 25.8 27.8 35.1 46.6 73.5

B.6. SGGen/SGDet Results

In addition to SGCls/PredCls results presented in the
main text, we follow previous work [82, 67] and provide
SGGen (SGDet) results that rely on using the bounding
boxes predicted by the detector as opposed to using GT
boxes (Table 12). We follow a standard refinement proce-
dure [82, 36] and fine-tune SGCls models with bs = 6 and
lr = (1e− 4)× bs. We fine-tune for 2 epochs in all cases,
which we set heuristically as our main goal in this task is not
to outperform state-of-the-art, but to compare our model with
the baseline. During this fine-tuning for simplicity we use
only the baseline loss for all models, so that this step’s main
purpose is to adapt the SGCls model to predicted bounding

Table 12. SGGen results. The top-1 result in each column is bolded.
†The results in [67] are obtained with a more advanced detector
and, thus, are not directly comparable.

MODEL
ZERO-SHOT MEAN RECALL ALL-SHOT

SGGen zsR@100 SGGen mR@100 SGGen R@100

Graph Constraint ✓ ✗ ✓ ✗ ✓ ✗

FREQ [82, 9, 36] 0.0 0.1 5.6 8.9 27.6 30.9
IMP+ [74, 82, 36] 0.9 0.9 4.8 8.0 24.5 27.4
NM [82, 9, 36] 0.3 0.8 6.1 12.9 30.3 35.8
KERN [9, 36] 0.0 0.0 7.3 16.0 29.8 35.8
VCTree† [67] 0.7 − 6.9 − 36.2 −
NM† [67] 0.2 − 6.8 − 36.9 −
NM+TDE† [67] 2.9 − 9.8 − 20.3 −

Baseline (IMP++) 0.8 0.9 5.9 9.8 25.1 28.1
GAN 1.0 1.2 6.2 10.5 25.4 28.6
GAN×w2 1.1 2.2 9.9 15.9 18.5 24.0

boxes instead of ground truth. Despite these simplifications
our GAN model still improves on the baseline. However, the
results are worse than in previous works, perhaps because:
(1) they rely on a stronger detector; (2) we do not update
the detector on the generated features conditioned on rare
compositions. Addressing these limitations can be the focus
of future work. The models with reweighted predicates
(§ B.4) significantly improve the results on mean recall (as
expected), and interestingly, on one of the zero-shot metrics.

B.7. Evaluation of Generated Visual Features

In addition to the quality estimation of node features in the
main text, we evaluate edge and global features qualitatively
(Fig. 16) and quantitatively (Table 13). We also visualize fea-
tures by averaging over the channel dimension (Fig. 17, 18).
These visualizations show that the generated samples are
diverse and respond to the changes in the conditioning. How-
ever, the global features generated by our GAN are notice-
ably more smooth, which might be an effect of the genera-
tor’s architectural inductive bias or visualization strategy.

Table 13. Evaluation of generated (fake) feature using the metrics of
“similarity” between two distributions X and Y [39, 51]. The same
held-out set of real test features (Y ∼ V ) is used as the reference
distribution in all cases. The percentage in the superscripts denotes
a relative drop of the average metric when switching from test to
test-zs conditioning. For all metrics, higher is better.

DISTRIBUTION X
Fidelity (realism) Diversity AVGPRECISION DENSITY RECALL COVERAGE

N
O

D
E

S Real test 0.74 1.02 0.75 0.97 0.87
Real test-zs 0.66 0.99 0.70 0.94 0.82−6%

GAN: Fake test 0.55 0.77 0.42 0.82 0.64
GAN: Fake test-zs 0.47 0.60 0.41 0.75 0.56−13%

E
D

G
E

S Real test 0.73 0.97 0.72 0.97 0.85
Real test-zs 0.53 0.99 0.59 0.87 0.75−12%

GAN: Fake test 0.54 0.59 0.50 0.75 0.60
GAN: Fake test-zs 0.38 0.36 0.50 0.58 0.46−23%

G
L

O
B

A
L Real test 0.30 0.96 0.31 0.99 0.64

Real test-zs 0.20 0.91 0.35 0.73 0.55−14%

GAN: Fake test 0.14 0.43 0.22 0.83 0.41
GAN: Fake test-zs 0.11 0.23 0.29 0.68 0.33−20%

4



REAL NODE FEATURES V FAKE NODE FEATURES V̂

60 40 20 0 20 40 60
100

80

60

40

20

0

20

40

60

60 40 20 0 20 40 60
100

80

60

40

20

0

20

40

60

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.04

0.02

0.00

0.02

0.04
People Food Animals Vehicles Constructions

REAL EDGE FEATURES FAKE EDGE FEATURES

100 50 0 50 100

75

50

25

0

25

50

75

100

100 50 0 50 100
100

75

50

25

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.04

0.02

0.00

0.02

0.04
Riding/Sitting on Of/Part of Wearing

GLOBAL FEATURES

15 10 5 0 5 10 15 20

30

20

10

0

10

Real
Fake

Figure 16. Visualizations of real vs generated node, edge and global
features obtained using t-SNE.

Input image Real feature map H

Generated Ĥ (sample # 1) Generated Ĥ (sample # 2)

G
Ĝ

:p
er

so
n
→

do
g

Figure 17. Real H and Fake (generated) Ĥ global feature maps
(averaged over the channel dimension) with a perturbation for the
triplet “person on surfboard” in G.

Features of objects Person Features of predicates On

R
ea

l
Fa

ke

Figure 18. Real and Fake node and edge features (averaged over
the channel dimension) for objects and predicates.

B.8. Limitations
Our method is limited in three main aspects. First, we

rely on a pretrained object detector to extract visual features.
Without generating augmentations all the way to the images
— in order to update the detector on rare compositions — it
is hard to obtain significantly stronger performance. While
augmentations in the feature space can be effective [16, 71],
their adoption for large-scale out-of-distribution generaliza-
tion is underexplored. Second, by making a simplification
and keeping GT bounding boxes for perturbed scene
graphs, we limit (1) the amount of perturbations we can
make (if we permit many nodes to be perturbed, then it
is hard to expect the same layout), and (2) the diversity
of spatial compositions, which might be an important
aspect of compositional generalization. We attempted to
verify that using ORACLE-ZS perturbations, which are
created by directly using ZS triplets from the test set.
Using ORACLE-ZS with GT bounding boxes (our default
setting) surprisingly does not result in large improvements.
However, when we replace GT boxes with the ones taken
from the corresponding samples of the test set, the results
improve significantly. This demonstrates that: (1) our GAN
model may benefit from reliable bounding box prediction
(e.g. [28]); (2) GRAPHN perturbations are already effective
(close to ORACLE-ZS) and improving the results further by
relying solely on perturbations is challenging. Third, the
quality of generated features, especially, for novel and rare
compositions is currently limited, which is also carefully an-
alyzed in [8]. Addressing this challenge can further improve
results both of ORACLE-ZS and non-ORACLE-ZS models.

C. Additional visualizations
Figures 19-21 show additional examples of different per-

turbations applied to scene graphs from Visual Genome (on
top of each figure we show graph G along with the corre-
sponding image). Perturbed nodes are highlighted in red.
Red edges denote triplets missing both in the training and
test sets. Thick red edges denote triplets only present in the
test set, i.e. zero-shots. Blue edges denote triplets present in
the training set, where the number indicates the total number
of such triplets in the training set. These visualization show
that in case of RAND, most of the created triplets are implau-
sible as a result of random perturbations. NEIGH leads to
very likely compositions, but less often provides rare plausi-
ble compositions. In contrast, GRAPHN can create plausible
compositions that are rare or more frequent depending on α.

5



RAND NEIGH GRAPHN

α
=

2
α
=

5
α
=

1
0

α
=

2
0

α
=

5
0

Figure 19. Visualizations of perturbations for image 2350517 from Visual Genome.

6



RAND NEIGH GRAPHN

α
=

2
α
=

5
α
=

1
0

α
=

2
0

α
=

5
0

Figure 20. Visualizations of perturbations for image 2343590 from Visual Genome.

7



RAND NEIGH GRAPHN

α
=

2
α
=

5
α
=

1
0

α
=

2
0

α
=

5
0

Figure 21. Visualizations of perturbations for image 1159620 from Visual Genome.

8


