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A. Loss Functions

In this section, we briefly describe softmax variant and proxy-based losses used in our study, as well as the hyper-
parameters of each loss. For notation, we refer to the embedding features as xi and corresponding label as yi. Each loss
function l(·) is written based on the generalized from of objective function:

L(X,W ) = − 1

| X |

|X|∑
i=1

l(xi, yi), (i)

where X and W are sets of embedding features and class weights, respectively.

Proxy-NCA [19] Typically, pair-based losses suffer from sampling issues such that sampling tuples heavily affects the
training convergence. To address this problem, Proxy-NCA loss introduces class proxies, which represent each class. In
this way, we can sample only one anchor and compare it against the corresponding positive and negative class proxies. It is
noteworthy that class proxies have the same meaning as class weights from the softmax variants theoretically and practically;
thus, we use the term ‘class weights’ to include class representatives or proxies in this paper. The Proxy-NCA loss can be
formulated as:

lproxy−NCA(xi, yi) = log
e−d(xi,Wyi

)∑C
j=1 e

−d(xi,Wj)
, (ii)

where d(a, b) =‖ a− b ‖2 is the Euclidean distance between a and b.

Proxy-anchor [11] Unlike typical softmax variants and proxy-based losses, Proxy-anchor loss uses each proxy as an anchor
and considers its relations with all samples in a batch. We define X+

w and X−w as the set of positive and negative embedding
features of each proxy (class weight)w, respectively, andW+ as the set of positive proxies of data in the mini-batch. Because
of its peculiar structure, we formulate the Proxy-anchor loss based on the mini-batch as follows:

Lproxy−anchor(X,W ) =
1

|W+ |
∑

w∈W+

log

{
1 +

∑
x∈X+

w

e−γ(s(x,w)−δ)
}
+

1

|W |
∑
w∈W

log

{
1 +

∑
x∈X−

w

eγ(s(x,w)+δ)

}
,

(iii)

where s(a, b) = aT b denotes the cosine similarity between a and b, γ is a scaling factor, and δ is a margin parameter. We use
γ = 46 and m = 0.1 for our hyper-parameters.

CosFace [30] CosFace loss reformulates the softmax loss as a cosine loss by l2 normalizing the embedding features and
class weights, which is equivalent to the Norm-softmax loss, and defines a decision margin in cosine space as:

lcosface(xi, yi) = log
eγ(cos(θyi )−m)

eγ(cos(θyi )−m) +
∑C
j=1,j 6=yi e

γ cos θj
, (iv)

where γ is a scale and m is a margin parameter. For our hyper-parameters, we use γ = 28 and m = 0.1.

ArcFace [2] Similar to CosFace loss, ArcFace loss transforms the Norm-softmax loss function by applying an angular
margin between the embedding xi and the corresponding class weight Wyi for each class. ArcFace loss can be formulated
as:

larcface(xi, yi) = log
eγ cos(θyi+m)

eγ cos(θyi+m) +
∑C
j=1,j 6=yi e

γ cos θj
, (v)

where we use the scale γ = 24 and the margin m = 0.1.



CurricularFace [7] CurricularFace incorporates the idea of curriculum learning into the ArcFace loss to adjust the relative
importance of easy and hard samples during training. The loss function of CurricularFace is formulated as follows:

lcurricularface(xi, yi) = log
eγT (cos θyi )

eγT (cos θyi ) +
∑C
j=1,j 6=yi e

γN(t,cos θj)
, (vi)

T (cosθyi) = cos(θyi +m), (vii)

N(t, cosθyj ) =

{
cosθyj , T (cosθyi)− cosθj ≥ 0

cosθyj (t
(k) + cosθj), T (cosθyi)− cosθj < 0,

(viii)

where T (·) and N(·) are modulation functions for the positive and negative cosine similarities, respectively. The parameter
t(k) of the k-th step is computed as follows:

t(k) = αr(k) + (1− α)t(k), (ix)

where r(k) is the average of the positive cosine similarities and α is the momentum parameter. For our hyper-parameters, we
use α = 0.99, γ = 26 and m = 0.3.

B. Details of MemVir
B.1. Proof of Gradient Analysis for Generalization

We provide a detailed proof of gradient analysis for generalization, which is discussed in Section 3.3.3. The proof is
shown by comparing the gradient descent of softmax and MemVir.

Gradient Descent of Softmax: As mentioned in Equation 6 of the main paper, the softmax loss can be written as follows:

lsoftmax(xi, yi) = log
eα(xi,yi)∑C
j=1 e

α(xi,j)
, (x)

where α(xi, j) =WT
j xi. The gradient of the softmax loss over the embedding feature xi can be inducted as follows:

∂lsoftmax(xi, yi)

∂xi
=

∑C
j=1 e

α(xi,j)

eα(xi,yi)
Wyie

α(xi,yi)
∑C
j=1 e

α(xi,j) − eα(xi,yi)
∑C
j=1Wje

α(xi,j)

(
∑C
j=1 e

α(xi,j))2

= Wyi −
∑C
j=1 e

α(xi,j)Wj∑C
j=1 e

α(xi,j)
. (xi)

For a moderately-trained model, xi should much more closer to Wyi compared to Wj for j 6= yi, which leads to α(yi, i) >
α(j, i) (Condition 1). Besides, for a model with norm-softmax loss, α(j, i) ∈ (−γ,+γ), where γ ≥ 10 in our experiment
setting (Condition 2). Considering Condition 1 with Condition 2 together, we can derive the conclusion that eα(xi,yi) >>
eα(xi,j) for j 6= yi. By applying such conclusion to the numerator of Equation xi for approximation, following equation can
be achieved:

∂lsoftmax(xi, yi)

∂xi
= Wyi −

∑C
j=1 e

α(xi,j)Wj∑C
j=1 e

α(xi,j)

≈ Wyi −
eα(xi,yi)Wyi∑C
j=1 e

α(xi,j)

= τWyi , (xii)

τ = 1− eα(xi,yi)∑C
j=1 e

α(xi,j)
. (xiii)



It is obvious that τ > 0. Besides, when xi → Wyi , e
α(xi,yi) becomes much larger than eα(xi,j), which leads to τ =

1 − eα(xi,yi)∑C
j=1 e

α(xi,j)
→ 1 − eα(xi,yi)

eα(xi,yi)
= 0, implying that xi converges as close to Wyi as possible. This can result in a strong

focus on the target weight Wyi and an over-fit to the seen classes of the training data.

Gradient Descent of MemVir: For MemVir, the softmax function in Equation x should be re-written as follows:

lsoftmax(xi, yi) = log
eα(xi,yi)∑(N+1)C

j=1 eα(xi,j)
, (xiv)

where the number of class weights increase from C to (N +1)C compared to softmax because of the existence of the virtual
classes. Then, the gradient of MemVir + softmax loss over the embedding feature xi can be inducted as follows:

∂lMemV ir(xi, yi)

∂xi
=

∑(N+1)C
j=1 eα(xi,j)

eα(xi,yi)
Wyie

α(xi,yi)
∑(N+1)C
j=1 eα(xi,j) − eα(xi,yi)

∑(N+1)C
j=1 Wje

α(xi,j)

(
∑(N+1)C
j=1 eα(xi,j))2

= Wyi −
∑(N+1)C
j=1 eα(xi,j)Wj∑(N+1)C
j=1 eα(xi,j)

(xv)

During training process, the class weights of past and present tend to be close each other, leading to the conclusion of
eα(xi,yi) >> eα(xi,j) for j 6= y

(n)
i , where y(n)i with n = 1, 2, 3, ..., N represents the virtual classes of class yi from the

step n and the term y
(0)
i = yi is used for convenience. By applying such conclusion to the numerator of Equation xv for

approximation, following equation can be achieved:

∂lMemV ir(xi, yi)

∂xi
= Wyi −

∑(N+1)C
j=1 eα(xi,j)Wj∑(N+1)C
j=1 eα(xi,j)

≈ Wyi −

∑N
n=0 e

α(xi,y
(n)
i )W

y
(n)
i∑(N+1)C

j=1 eα(xi,j)

= τ0Wyi +

N∑
n=1

τnWy
(n)
i
, (xvi)

τ0 = 1− eα(xi,yi)∑(N+1)C
j=1 eα(xi,j)

, τn = − eα(xi,y
(n)
i )∑(N+1)C

j=1 eα(xi,j)
(xvii)

It is obvious that τ0 > 0. However, τ0 would not be close to zero whether xi is nearby Wyi or not, because virtual classes
would be close to Wyi . This can alleviate the phenomenon of the embedding feature becoming extremely close to the target
Wyi . In addition, because of τn, such alleviation would be more extensive and can effectively ease the intense focus of the
softmax loss, leading to a more substantial generalization.

B.2. Revisiting Slow Drift Phenomena

“Slow drift” phenomena have been introduced in [33], which identifies the slow drifting speed of the embeddings by
measuring the difference of features for the same instance computed at different training steps. With this observation, [33]
suggests using the embeddings of past steps for loss computation of the current step. We reproduce “slow drift” phenomena
with weight features as follows:

4d(Wt,Wt−m) :=‖Wt −Wt−(m+1) ‖22, (xviii)



Turn on MemVir

Learning rate decay

U

Figure A. Weight drift4d with m = 100 and corresponding Recall@1 performance of baseline and MemVir(1,100).

where Wt is weight features of current step t and Wt−(m+1) is weight features of past step t − (m + 1). As illustrated in
Figure A, the weight drift of the baseline is very slow, especially after learning rate decay. We can observe that it converges
to local minima with a negligible amount of weight updates after the learning rate decay. On the contrary, when we turn on
MemVir instead of learning rate decay, we observe that the weight drift has risen by the enlarged magnitude of gradient; thus,
it gives more chance to escape from the local minima for performance improvement.

We further analyze these phenomena by comparing the gradient descent of the softmax loss and MemVir. The softmax
loss can be written as follows:

lsoftmax(xi, yi) = log
eW

T
yi
xi∑C

j=1 e
WT
j xi

= log
eα(yi,i)∑C
j=1 e

α(j,i)
, (xix)

where α(j, i) =WT
j xi. Then, the gradient of such loss over α(j, i) can be inducted as follows:

∂lsoftmax(xi, yi)

∂α(yi, i)
=

∑C
j=1 e

α(j,i) − eα(yi,i)∑C
j=1 e

α(j,i)

= 1− eα(yi,i)∑C
j=1 e

α(j,i)
. (xx)

Because eα(yi,i) >> eα(j,i) for j 6= yi, thus, ∂lsoftmax(xi,yi)∂α(yi,i)
is close to zero. Considering the weight update is performed

by w = w − η ∂L∂w , where η is a learning rate, the weight update will be negligible and result in “slow drift” phenomena,
especially with a small learning rate.

MemVir overcomes such situation by increasing the magnitudes of gradients. The inducted gradient of MemVir over
α(j, i) is as follows:

∂lsoftmax(xi, yi)

∂α(yi, i)
=

∑(N+1)C
j=1 eα(j,i) − eα(yi,i)∑(N+1)C

j=1 eα(j,i)

= 1− eα(yi,i)∑(N+1)C
j=1 eα(j,i)

≈ 1− eα(yi,i)

eα(yi,i) +
∑N
n=1 e

α(y
(n)
i ,i)

, (xxi)



Softmax ArcFace CurricularFace

CARS196 (30, 50) (40,50) (5,100)
SOP (4, 50) (10,50) (9,50)

(a) Comparison with related methods.

Softmax Norm-softmax CosFace ArcFace Proxy-NCA Proxy-anchor

CUB200 (5,75) (10,10) (25,150) (40,40) (10,25) (5,75)
CARS196 (15,25) (45,10) (25,150) (15,10) (20,25) (15,75)
SOP (3,150) (7,90) (6,100) (9,80) (2,80) (8,50)

(b) Conventional evaluation.

Norm-softmax CosFace ArcFace Proxy-NCA Proxy-anchor

CUB200 (15,20) (35,75) (40,100) (40,50) (15,75)
CARS196 (50,50) (2,300) (35,10) (10,250) (25,25)
SOP (15,50) (10,50) (5,200) (20,50) (5,100)

(c) MLRC evaluation.

Table A. Hyper-parameters (N ,M ) of MemVir for each experiment.

where y(n)i is the index of the weights before n steps. As eα(y
(n)
i ,i) are not close to zero, ∂lsoftmax(xi,yi)∂α(yi,i)

will not be close to
zero. Thus, the gradient of MemVir will be relatively larger than that of the softmax loss, which gives more chance to escape
from the local minima. Note that the magnitudes of gradients can be controlled by the difficulty of curriculum learning, such
as hyper-parameters N and M .

C. Details of Experimental Settings
C.1. Datasets

Throughout the paper, we use three famous benchmarking datasets in deep metric learning (DML) as follows:

• CUB200-2011 (CUB200) [28]: CUB200 contains 11,788 images of birds in 200 classes. We use 5,864 images of the
first 100 classes for training and 5,924 images of the other 100 classes for testing without bounding box information.

• CARS196 [16]: CARS196 contains 16,185 images of cars in 196 classes. We use 8,054 images of the first 98 classes
for training and 8,131 images of the other 98 classes for testing without bounding box information.

• Standford Online Products (SOP) [21]: SOP contains 120,053 images of products in 22,634 classes. We use 59,551
images of the 11,318 classes for training and 60,502 images of the other 11,316 classes for testing.

C.2. Implementation

We implement all models using the PyTorch framework [23], and experiments are performed on Nvidia V100 GPUs. For
the conventional evaluation, we follow the widely used training and testing protocol as [21, 25, 11, 31]. For the Metric
Learning Reality Check (MLRC) evaluation, we follow the training and evaluation procedure defined in [20].

C.2.1 Conventional Evaluation

Input images are augmented by random cropping and horizontal flipping in the training phase, whereas they are center-
cropped in the test phase. The size of the cropped images is 224 × 224. For the backbone network, the Inception network
with batch normalization (BN-Inception) [9] pre-trained with ImageNet [1] is used. We use a global average pooling followed
by a fully connected layer for dimensionality reduction and set the dimension of the embedding feature to 512. We freeze
batch normalization for CUB200 and CARS196 and keep batch normalization training for SOP by following [24, 31, 11].
The batch size is set to 128 for every experiment. Optimization is performed using Adam optimizer [14] with a learning rate
of 10−4 for CUB200 and CARS196, and 10−3 for SOP. The learning rate is decayed by a factor of 0.1 at the 50th epoch



for CARS196, and the 20th epoch for CUB200 and SOP. For MemVir, we use warm-up epoch Ue = 50 for CARS196 and
SOP, and Ue = 20 for CUB200 without learning rate decay. With the same hyper-parameters of the baselines, we tune
hyper-parameters N and M for MemVir via hyper-parameter search as described in A.

Proxy-anchor: For more details of Proxy-anchor loss in terms of implementation, we have found that proxy-anchor loss
has been implemented with additional tricks, which is also mentioned in [36]. The additional tricks are as follows: 1) an
AdamW optimizer [17] instead of Adam optimizer [14], 2) a parameter warm-up strategy for better optimization stability, 3)
instead of an average pooling, a combination of an average and a max pooling following the backbone network. For a fair
comparison, we discard those tricks and follow the conventional metric learning protocol in every experiment. Exceptionally,
we use the parameter warm-up with one epoch for SOP dataset because the training with Proxy-anchor loss fails without the
parameter warm-up strategy.

Multi-Similarity loss: In Multi-Similarity (MS) loss [31], we have found that the best scores reported in the paper are
conducted with either too small or large batch size, such as a batch size of 80 for CUB200 and batch size of 1000 for SOP.
For a fair comparison, we conduct experiments of MS loss with the conventional batch size of 128., including the number of
instances of 4. Note that we use the number of instances of 4 instead of 5 from the paper because 128 is not divisible by 5.

C.2.2 MLRC Evaluation

Each image is resized to make its shorter side to be the length of 256, then augmented by random cropping to have a size
between 40 and 256, and by aspect ratio between 3/4 and 4/3 in the training phase. The resulting image is then resized to
227× 227 and flipped horizontally with a 50% probability. In the test phase, each image is resized to 256 and center-cropped
to 227. We use BN-Inception for the backbone network with an output embedding size of 128. Optimization is performed
using RMSprop optimizer with a learning rate of 10−6 and a batch size of 32. To find the best hyper-parameters for loss
functions, we run 50 experiments of hyper-parameter search with 4-fold cross-validation of each experiment. With the best
hyper-parameters found, we conduct 10 training runs and report the average and confidence intervals to be less subject
to random seed noise. We report both separated (128-dim) and concatenated (512-dim) performance, where the 512-dim
embedding is concatenated and l2-normalized of 128-dim embedding of the 4 models.

C.3. fANOVA

We apply the fANOVA [8] analysis framework to estimate the impact of each hyper-parameter on the performance of
MemVir in Section 4.4 and D.5. fANOVA predicts the marginal performance using a predictive model (random forest),
which is a function of the model’s hyper-parameters. Then, it determines the extent to which each hyper-parameter or pair-
wise interaction contributes to the model performance. In the experiments of MemVir, we conduct 5 training runs for each
pair of (N,M ), and each pair is created by the combination of range N and range M . For CUB200 and CAS196, range N
is 5 to 50 in 5 intervals including 1, and range M is 0 to 100 in 10 intervals. For SOP, we reduce the range N to be 1 to 7
because of memory limitation of one gpu. These experimental results are used to train random forests for fANOVA analysis.

D. Extended Experiments
D.1. Analysis of Memory and Computational Cost

In this section, we analyze memory and computational cost of MemVir with the same experimental setting described
in Section C.2.1. MemVir requires O(BNM(D + C)) for the memory queues, O(BCN2) for the similarity matrix, and
O(BCN2) for the computational complexity during the training phase, whereB, C, andD are batch size, number of classes,
and feature dimension, respectively. In the inference phase, MemVir requires no additional memory or computational cost.
As shown in Figure B, the memory usage of MemVir with 128 batch size increases as N and M are increased. Compared
to the Norm-softmax model, MemVir(1,100) and MemVir(45,10) improve +1.3% and +3.5% performances with additional
52MB and 704MB GPU memory, respectively. MemVir(50,100), which increases the number of classes and embeddings by
50 times, only requires additional 2.9GB GPU memory and shows better memory efficiency than the baseline with 256 batch
size, which requires 6.8GB more GPU memory than MemVir(50,100) with 128 batch size. Even though the memory usage
of MemVir would be larger for datasets with a large number of classes, it can be controlled by placing a reduced number of
class weights in W, which are corresponding classes of current step embeddings. In terms of performance, applying MemVir
is more effective than increasing the batch size, which is empirically shown in Section 4.3.



(a) MemVir(N,M) + Norm-softmax with 128 batch size (b) Norm-softmax

Figure B. Memory usage (MB) of MemVir(N ,M ) + Norm-
softmax with 128 batch size and Norm-softmax with differ-
ent batch size on CARS196 dataset.

Figure C. Distributions of relative performances for each
learning rate by step gap M . For each learning rate,
Recall@1 performances of MemVir(1,M ) on CARS196
dataset are normalized across step gap M .

D.2. Impact of Learning Rate

Typically, memory-based methods [13, 33] get influenced by learning rate because it affects the difference between training
steps. As discussed in Section 3.2, MemVir can control the difference between training steps with margin parameter M . To
see the impact of learning rate, we train MemVir(1,M) with a range M from 0 to 100 in 5 intervals and normalize Recall@1
performances across step gap M for each learning rate. We plot the distributions of relative performances by step gap M for
each learning rate. As described in Figure C, the larger learning rate requires the smaller step gap M for better performance.
This is because a sufficient difference between the training steps can be achieved by a large gap M for a small learning
rate and a small gap M for a large learning rate. Thus, the different learning rates can be controlled by the step gap M for
MemVir.

D.3. Impact of Warm-up

As discussed in Section 3.3.1, the warm-up period of MemVir enables the model to avoid training with distractive virtual
classes from the initial step. To see the impact of the warm-up period, we conduct experiments by differentiating the warm-up
epoch with MemVir(1,100) and MemVir(50,10). As shown in Figure D, MemVir(1,100) shows the lowest performance when
Ue = 0 and stable performance for Ue > 0. For MemVir(50,10), the lowest performance is also shown when Ue = 0 and the
performance increases until Ue = 60, then decreases. It is noteworthy that the lowest performance of MemVir with Ue = 0
still shows higher performance than that of the baseline. The results show that proper steps of warm-up help increase the
capability of MemVir, and this pattern stands out more to MemVir with longer scheduling of virtual classes addition.

D.4. Robustness to Input Deformation

We now evaluate the quality of representations learned with MemVir with respect to generalization to input deformations.
We train models with Norm-softmax loss and MemVir + Norm-softmax loss on CARS196 dataset but test them on the novel
(not seen during training) input deformations of the test set. For the input deformation, we use the imgaug [10] python library
and the details of deformations are as follows.

• Cutout: Each image is randomly filled with two gray pixels that are 20% of the image size.

• Dropout: p% of pixels are dropped from each image, where p is randomly sampled from a range 0% ≤ p ≤ 20%.

• Zoom-in and zoom-out: Each image is transformed by zoom-in and zoom-out with scale of 50% and 150%, respectively.

• Rotation and shearing: Each image is transformed by rotation and shearing with a randomly sampled degree between
-30◦ and 30◦.



Figure D. Impact of warm-up epochUe of MemVir + Norm-
softmax on CARS196 dataset. We report the performance
of MemVir with different warm-up epoch. Note that the
performance of baseline Norm-softmax is unrelated to the
warm-up epoch.

Deformation Norm-softmax MemVir

W/o deformation 83.3 86.6 (+3.3)
Cutout 75.3 79.2 (+3.9)
Dropout 59.7 67.7 (+8.0)
Zoom in 64.3 68.1 (+3.9)
Zoom out 78.3 81.7 (+3.4)
Rotation 70.8 73.4 (+2.6)
Shearing 70.3 73.2 (+3.0)
Gaussian noise 65.1 71.2 (+6.1)
Gaussian blur 74.4 78.2 (+3.8)

Table B. Recall@1(%) performance of input deforma-
tions with CARS196 trained models. We compare
Norm-softmax with MemVir(50,10) + Norm-softmax.

(N,M) (0,0)-baseline (1,100) (5,100) (10,100) (20,100)

Only-weights 83.6 84.4 84.5 84.3 83.8
MemVir 84.9 85.1 85.5 85.8

Table C. Recall@1 (%) of only-weights and MemVir on CARS196.

• Gaussian noise: Gaussian noise is applied to each image, where the noise is sampled per pixel from a normal distribution
N(0, s) and s is sampled between 0 and 0.2× 255.

• Gaussian blur: Gaussian kernel with a sigma of 3.0 is applied to each image.

As shown in Table B, performances of Norm-softmax are degraded significantly when applied input deformations. On the
other hand, MemVir exhibits relatively smaller performance degradation compared to that of the Norm-softmax, and shows
better robustness to all input deformations, particularly for dropout and gaussian noise. This demonstrates that MemVir
allows the model to obtain a more generalized embedding space.

D.5. Impact of Hyper-parameters

In addition to the hyper-parameter analysis of CARS196 in Section 4.4, we include extra analyses on CUB200 and SOP.
As shown in Figure E, the performance on CUB200 increases until the margin M = 5, and then decreases. For the margin,
the performance improves as the margin M increases. In the case of SOP, the performance increases as both N and M
increase while there is a slight degradation of performance around M = 10. As mentioned in Section 4.4, the performance
pattern and importance of each hyper-parameter differs for each dataset because of different data characteristics. However,
we can observe that, for both CUB200 and SOP, the best performance is achieved when N and M are larger than 1 and 0,
respectively.

D.6. Impact of Embeddings and Class Weights in Virtual Class

To investigate the quantitative impact of embeddings and class weights in virtual classes, we conduct an experiment
by using only class weights in virtual classes. Note that using only embeddings in virtual classes is not possible because
every embedding requires corresponding class weights in loss computation. Table C shows that using only class weights
increases performance than the baseline, but using both embeddings and class weights (MemVir) outperforms it. It suggests
the necessity of embeddings to form proper virtual classes.



(a) Impact of number of step N (b) Impact of margin M (c) Impact of pair-wise interaction

Figure E. Impact of hyper-parameters on CUB200 with fANOVA analysis framework.

(a) Impact of number of step N (b) Impact of margin M (c) Impact of pair-wise interaction

Figure F. Impact of hyper-parameters on SOP with fANOVA analysis framework.

D.7. Comparison with Related Methods

We provide an extended comparison with related methods from image recognition tasks following Section 4.5. As shown
in Table Da, we set two different experimental setups to compare the methods in various experimental settings. Setup 1
is following the experimental settings from BroadFace [13] and CurricularFace [7], and setup 2 is from the conventional
DML settings described in Section C.2.1 with ResNet50 [6] backbone. As XBM [33] shares the memory-based idea with
BroadFace, we conduct experiments of XBM in ArcFace loss to compare with BroadFace. As shown in Table D, Virtual
softmax degrades the performance for both setups 1 and 2, whereas MemVir improves the performance for both setups.
In Virtual softmax, the single virtual class weight is created by Wvirt =

‖Wyi
‖Xi

‖Xi‖ . We observe that the logit with virtual
class WT

virtXi is much larger than the positive logit WT
yiXi due to the same direction of vectors Wvirt and Xi, and it

distracts the model from stable training. Combining XBM with ArcFace shows a little performance improvement for both
setups, but we observe performance degradation when the memory size is large, as reported in BroadFace. To resolve this
problem, BroadFace presents a compensation technique and gradient control. For the details, the compensation technique
compensates memorized embeddings by considering class weights updating, while the gradient control computes the loss
function into two ways: (1) loss from a mini-batch is for updating the backbone network. (2) loss from the mini-batch and
past embeddings is for updating the class weights. BroadFace shows a higher performance boost with the SGD optimizer in
setup 1 than the Adam optimizer in setup 2. We observe that BroadFace is sensitive to optimizer type, which could be because
of the specifically designed gradient control. On the other hand, MemVir achieves larger performance gains for both setups
without any modification of loss functions. CurricularFace shows competitive performance in both setups with an embedded
curriculum learning process. When MemVir is applied, the performance of CurricularFace could further be improved by
exploiting augmented information from virtual classes.



Backbone Dimension Batch size Optimizer Initial LR

Setup 1 ResNet50 512 512 SGD 0.005
Setup 2 ResNet50 512 128 Adam 0.0001

(a) Two different experimental setups.

CARS196 SOP
Method R@1 R@2 R@4 R@8 R@1 R@10 R@100 R@1000

Softmax 78.3 86.4 91.9 95.7 76.6 89.4 95.8 98.8
Virtual Softmax 75.1 84.1 90.1 94.0 74.5 87.9 94.8 98.3
MemVir + Softmax 79.2 87.0 92.1 95.7 78.9 90.6 96.2 98.8

ArcFace 78.8 86.4 91.7 95.4 76.9 89.1 95.0 98.2
XBM + ArcFace 78.9 86.2 91.9 95.5 78.1 89.7 95.8 98.2
BroadFace + ArcFace 79.5 87.3 92.0 95.5 80.2 91.0 95.9 98.4
MemVir + ArcFace 80.7 88.1 92.7 95.8 80.8 91.3 96.5 98.9

CurricularFace 79.9 87.3 92.0 95.6 79.8 90.7 95.6 98.2
MemVir + CurricularFace 81.0 87.9 92.9 95.8 81.3 91.7 96.5 98.8

(b) Performance (%) comparison in experimental setup 1.

CARS196 SOP
Method R@1 R@2 R@4 R@8 R@1 R@10 R@100 R@1000

Softmax 82.4 88.8 92.1 95.2 78.1 89.1 95.2 97.9
Virtual Softmax 77.6 85.3 90.7 94.3 77.3 87.8 94.1 97.2
MemVir + Softmax 86.8 92.3 95.5 97.6 78.9 90.6 96.2 98.8

ArcFace 83.2 89.5 93.7 96.4 78.6 90.3 95.8 98.5
XBM + ArcFace 83.9 90.3 94.2 96.5 78.8 90.1 96.0 98.3
BroadFace + ArcFace 83.9 90.5 94.2 96.9 79.1 90.7 96.2 98.8
MemVir + ArcFace 85.4 90.9 94.7 96.9 79.5 90.9 96.2 98.8

CurricularFace 83.5 90.1 94.2 96.5 78.5 90.1 95.6 98.4
MemVir + CurricularFace 85.4 91.0 94.5 96.9 79.3 90.5 95.8 98.5

(c) Performance (%) comparison in experimental setup 2.

Table D. Performance (%) comparison with related methods in two different experimental setups.

D.8. Visualization of Embedding Space

For further understanding, we include extended t-SNE [18] visualization of embedding space, followed by Figure 6 in
Section 4.2. As illustrated in Figure Ga, Gb, and Gc, embedding features from the seen classes are getting clustered by
training process, and further training may cause a model overly fitted to the seen classes. To alleviate this strong focus
on seen classes, MemVir begins to add virtual classes slowly and increases learning difficulty gradually, as described in
Figure Gd, Ge, Gf, Gg and Gh. Actual and virtual classes, which are originated from the same class label, tend to be located
close to each other. Further training allows the model to learn how to discriminate additional classes effectively, as illustrated
in Figure Gi, Gj, Gk, and Gl. Finally, we obtain a model with sufficient discriminative power over all actual and virtual
classes at the 200th epoch.

D.9. Comparison with State-of-the-art

This section includes extended comparison with state-of-the-art methods for both conventional evaluation and MLRC
evaluation in addition to Section 4.6. As shown in Table E, G, and I of conventional evaluation, we report additional Re-
call@k performance and comparison with different types of DML methods. For MLRC evaluation, we report both separated
(128-dim) and concatenated (512-dim) performance as presented in Table F, H, and J. In conventional evaluation, MemVir
shows a significant performance boost in all Recall@k for every dataset and loss function. Compared with different types
of DML methods, including ensemble, sample generation, memory-based, pair-based, proxy-based, and softmax variants,



: Class weight, (current)Embedding color (step): (-1(M+1)) (-2(M+1)) (-3(M+1)) (-4(M+1)) (-5(M+1))

(a) 1st epoch, # of classes = C (b) 25th epoch, # of classes = C (c) 50th epoch, # of classes = C

(d) 52nd epoch, # of classes = 2C (e) 54th epoch, # of classes = 3C (f) 56th epoch, # of classes = 4C

(g) 58th epoch, # of classes = 5C (h) 60th epoch, # of classes = 6C (i) 90th epoch, # of classes = 6C

(j) 120th epoch, # of classes = 6C (k) 150th epoch, # of classes = 6C (l) 200th epoch, # of classes = 6C

Figure G. t-SNE visualization of 512-dimensional embedding space. Embedding features are extracted by a model trained
with MemVir(5,100) on CARS196 training data. Each color indicates a step for embedding features.



MemVir shows competitive performance for all datasets. In MLRC evaluation, MemVir enjoys a high-performance gain over
every dataset and loss function in both separated (128-dim) and concatenated (512-dim) experiments. Considering MLRC
evaluation is designed for fair evaluation, the results demonstrate that MemVir is a flexible and powerful training strategy for
many existing softmax variants and proxy-based losses.



CUB-200-2011 [28]

T Method Net Dim R@1 R@2 R@4 R@8

E
ns

HDC [34] G 384 53.6 - 65.7 - 77.0 - 85.6 -
A-BIER [22] G 512 57.5 - 68.7 - 78.3 - 86.2 -
ABE [12] G 512 60.6 - 71.5 - 79.8 - 87.4 -

G
en

DAML [3] + N-pair G 512 52.7 - 65.4 - 75.5 - 84.3 -
HDML [35] + N-pair G 512 53.7 - 65.7 - 76.7 - 85.7 -
Symm [5] + N-pair G 512 55.9 - 67.6 - 78.3 - 86.2 -
EE [15] + MS G 512 57.4 - 68.7 - 79.5 - 86.9 -
Symm [5] + MS BN 512 64.9 - 76.4 - 84.6 - 90.5 -
EE [15] + MS BN 512 65.1 - 76.8 - 86.1 - 91.0 -

M XBM [33] + Contrastive BN 512 65.8 - 75.9 - 84.0 - 89.9 -

Pa
ir

HTL [4] BN 512 57.1 - 68.8 - 78.7 - 86.5 -
RLL-H [32] BN 512 57.4 - 69.7 - 79.2 - 86.9 -
Multi-Similarity (MS)† [31] BN 512 64.5 - 76.2 - 84.6 - 90.5 -

SoftTriple [24] BN 512 65.4 - 76.4 - 84.5 - 90.4 -
ProxyGML [36] BN 512 66.6 - 77.6 - 86.4 - - -
Circle [26] BN 512 66.7 - 77.4 - 86.2 - 91.2 -
Softmax BN 512 64.2 - 75.7 - 84.1 - 89.9 -
MemVir + Softmax BN 512 66.8 (+2.6) 76.9 (+1.2) 85.4 (+1.3) 91.2 (+1.3)
Norm-softmax [29] BN 512 64.9 - 75.7 - 84.3 - 90.5 -
MemVir + Norm-softmax BN 512 67.3 (+2.4) 77.2 (+1.5) 85.3 (+1.0) 90.8 (+0.3)
Cosface [30] BN 512 65.7 - 76.2 - 84.7 - 90.6 -
MemVir + Cosface BN 512 67.7 (+2.0) 77.8 (+1.6) 85.7 (+1.0) 91.1 (+0.5)
Arcface [2] BN 512 66.1 - 76.6 - 84.8 - 90.7 -
MemVir + Arcface BN 512 67.4 (+1.3) 77.7 (+1.1) 85.5 (+0.7) 91.2 (+0.5)
Proxy-NCA [19] BN 512 64.3 - 75.3 - 83.6 - 89.6 -
MemVir + Proxy-NCA BN 512 68.3 (+4.0) 78.9 (+3.6) 85.7 (+2.1) 90.9 (+1.3)
Proxy-anchor† [11] BN 512 67.7 - 78.5 - 85.7 - 90.9 -
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MemVir + Proxy-anchor BN 512 69.0 (+1.3) 79.2 (+0.7) 86.8 (+1.1) 91.6 (+0.7)

-
Average boost - - - (+2.3) - (+1.6) - (+1.2) - (+0.8)
Minimum boost - - - (+1.3) - (+0.7) - (+0.7) - (+0.3)
Maximum boost - - - (+4.0) - (+3.6) - (+2.1) - (+1.3)

Table E. [Conventional evaluation] Recall@k (%) on CUB-200-2011 dataset in image retrieval task. Method type (T) is
denoted by abbreviations (Ens: ensemble, Gen: sample generation, M: memory-based, Pair: pair-based losses, Softmax
variant / Proxy: softmax variants and proxy-based losses). Backbone network (Net) also is denoted by abbreviations (G:
GoogleNet [27], BN: BN-Inception [9]). † denotes evaluation in a fair setting described in Section C.2.1.

CUB-200-2011 [28] Concatenated (512-dim) Separated (128-dim)

Loss P@1 RP MAP@R P@1 RP MAP@R

Norm-softmax [29] 65.65 ± 0.30 35.99 ± 0.15 25.25 ± 0.13 58.75 ± 0.19 31.75 ± 0.12 20.96 ± 0.11
MemVir + Norm-softmax 69.22 ± 0.15 37.92 ± 0.16 27.10 ± 0.13 59.83 ± 0.23 31.46 ± 0.16 20.55 ± 0.14
CosFace [30] 67.32 ± 0.32 37.49 ± 0.21 26.70 ± 0.23 59.63 ± 0.36 31.99 ± 0.22 21.21 ± 0.22
MemVir + CosFace 69.79 ± 0.26 37.85 ± 0.23 27.08 ± 0.28 61.33 ± 0.30 31.99 ± 0.18 21.30 ± 0.17
ArcFace [2] 67.50 ± 0.25 37.31 ± 0.21 26.45 ± 0.20 60.17 ± 0.32 32.37 ± 0.17 21.49 ± 0.16
MemVir + ArcFace 69.33 ± 0.41 37.82 ± 0.28 26.96 ± 0.25 61.38 ± 0.23 32.53 ± 0.13 21.58 ± 0.12
Proxy-NCA [19] 65.69 ± 0.43 35.14 ± 0.26 24.21 ± 0.27 57.88 ± 0.30 30.16 ± 0.22 19.32 ± 0.21
MemVir + Proxy-NCA 69.25 ± 0.32 37.31 ± 0.12 26.43 ± 0.17 60.08 ± 0.25 31.26 ± 0.15 20.30 ± 0.14
Proxy-anchor [11] 69.73 ± 0.31 38.23 ± 0.37 27.44 ± 0.35 61.50 ± 0.34 32.94 ± 0.25 22.19 ± 0.25
MemVir + Proxy-anchor 69.81 ± 0.28 38.57 ± 0.14 27.83 ± 0.16 62.58 ± 0.28 33.69 ± 0.18 22.75 ± 0.16

Table F. [MLRC evaluation] Performance (%) on CUB-200-2011 dataset in image retrieval task. We report the performance
of concatenated 512-dim and separated 128-dim. Bold numbers indicate the best score within the same loss.



CARS196 [16]

T Method Net Dim R@1 R@2 R@4 R@8

E
ns

HDC [34] G 384 73.7 - 83.2 - 89.5 - 93.8 -
A-BIER [22] G 512 82.0 - 89.0 - 93.2 - 96.1 -
ABE [12] G 512 85.2 - 90.5 - 94.0 - 96.1 -

G
en

DAML [3] + N-pair G 512 75.1 - 83.8 - 89.7 - 93.5 -
HDML [35] + N-pair G 512 79.1 - 87.1 - 92.1 - 95.5 -
Symm [5] + N-pair G 512 76.5 - 84.3 - 90.4 - 94.1 -
EE [15] + MS G 512 76.1 - 84.2 - 89.8 - 93.8 -
Symm [5] + MS BN 512 82.4 - 89.2 - 93.3 - 96.1 -
EE [15] + MS BN 512 82.7 - 89.2 - 93.8 - 96.4 -

M XBM [33] + Contrastive BN 512 82.0 - 88.7 - 93.1 - 96.1 -

Pa
ir

HTL [4] BN 512 81.4 - 88.0 - 92.7 - 95.7 -
RLL-H [32] BN 512 74.0 - 83.6 - 90.1 - 94.1 -
Multi-Similarity (MS)† [31] BN 512 82.1 - 88.8 - 93.2 - 96.1 -

SoftTriple [24] BN 512 84.5 - 90.7 - 94.5 - 96.9 -
ProxyGML [36] BN 512 85.5 - 91.8 - 95.3 - - -
Circle [26] BN 512 83.4 - 89.8 - 94.1 - 96.5 -
Softmax BN 512 81.5 - 89.0 - 93.6 - 96.8 -
MemVir + Softmax BN 512 86.5 (+5.0) 92.4 (+3.4) 95.6 (+2.0) 97.4 (+0.6)
Norm-softmax [29] BN 512 83.3 - 89.7 - 94.1 - 96.7 -
MemVir + Norm-softmax BN 512 86.8 (+3.5) 92.3 (+2.6) 95.4 (+1.3) 97.4 (+0.7)
Cosface [30] BN 512 83.6 - 89.9 - 94.2 - 96.6 -
MemVir + Cosface BN 512 86.6 (+3.0) 91.8 (+1.9) 95.1 (+0.9) 97.3 (+0.7)
Arcface [2] BN 512 83.7 - 90.0 - 94.3 - 96.8 -
MemVir + Arcface BN 512 86.5 (+2.8) 91.9 (+1.9) 95.1 (+0.8) 97.1 (+0.3)
Proxy-NCA [19] BN 512 82.0 - 89.2 - 93.8 - 96.4 -
MemVir + Proxy-NCA BN 512 86.5 (+4.5) 91.8 (+2.6) 95.5 (+1.7) 97.4 (+1.0)
Proxy-anchor† [11] BN 512 84.9 - 91.1 - 94.6 - 96.9 -
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MemVir + Proxy-anchor BN 512 86.7 (+1.8) 92.0 (+0.9) 95.2 (+0.6) 97.4 (+0.5)

-
Average boost - - (+3.4) - (+2.2) - (+1.2) - (+0.6
Minimum boost - - (+1.8) - (+0.9) - (+0.6) - (+0.3)
Maximum boost - - (+5.0) - (+3.4) - (+2.0) - (+1.0)

Table G. [Conventional evaluation] Recall@k (%) on CARS196 dataset in image retrieval task. Method type (T) is de-
noted by abbreviations (Ens: ensemble, Gen: sample generation, M: memory-based, Pair: pair-based losses, Softmax
variant / Proxy: softmax variants and proxy-based losses). Backbone network (Net) also is denoted by abbreviations (G:
GoogleNet [27], BN: BN-Inception [9]). † denotes evaluation in a fair setting described in Section C.2.1.

CARS196 [16] Concatenated (512-dim) Separated (128-dim)

Loss P@1 RP MAP@R P@1 RP MAP@R

Norm-softmax [29] 83.16 ± 0.25 36.20 ± 0.26 26.00 ± 0.30 72.55 ± 0.18 29.35 ± 0.20 18.73 ± 0.20
MemVir + Norm-softmax 85.81 ± 0.18 38.78 ± 0.19 28.92 ± 0.17 76.01 ± 0.23 30.86 ± 0.16 20.36 ± 0.16
CosFace [30] 85.52 ± 0.24 37.32 ± 0.28 27.57 ± 0.30 74.67 ± 0.20 29.01 ± 0.11 18.80 ± 0.12
MemVir + CosFace 87.57 ± 0.13 39.10 ± 0.21 29.56 ± 0.26 76.86 ± 0.28 30.59 ± 0.22 20.23 ± 0.24
ArcFace [2] 85.44 ± 0.28 37.02 ± 0.29 27.22 ± 0.30 72.10 ± 0.37 27.29 ± 0.17 17.11 ± 0.18
MemVir + ArcFace 88.02 ± 0.18 39.12 ± 0.15 29.63 ± 0.15 78.58 ± 0.26 31.03 ± 0.25 20.89 ± 0.26
Proxy-NCA [19] 83.56 ± 0.27 35.62 ± 0.28 25.38 ± 0.31 73.46 ± 0.23 28.90 ± 0.22 18.29 ± 0.22
MemVir + Proxy-NCA 87.02 ± 0.15 38.51 ± 0.15 28.76 ± 0.16 76.35 ± 0.28 30.29 ± 0.23 19.81 ± 0.25
Proxy-anchor [11] 86.20 ± 0.21 39.08 ± 0.31 29.37 ± 0.29 76.97 ± 0.40 31.71 ± 0.53 21.29 ± 0.56
MemVir + Proxy-anchor 86.40 ± 0.18 40.27 ± 0.20 30.58 ± 0.20 76.97 ± 0.26 32.87 ± 0.21 22.31 ± 0.22

Table H. [MLRC evaluation] Performance (%) on CARS196 dataset in image retrieval task. We report the performance of
concatenated 512-dim and separated 128-dim. Bold numbers indicate the best score within the same loss.



Stanford Online Products [21]

T Method Net Dim R@1 R@10 R@100 R@1000

E
ns

HDC [34] G 384 69.5 - 84.4 - 92.8 - 97.7 -
A-BIER [22] G 512 74.2 - 86.9 - 94.0 - 97.8 -
ABE [12] G 512 76.3 - 88.4 - 94.8 - 98.2 -

G
en

DAML [3] + N-pair G 512 68.4 - 83.5 - 92.3 - - -
HDM [35] + N-pair G 512 68.7 - 83.2 - 92.4 - - -
Symm [5] + N-pair G 512 73.2 - 86.7 - 94.8 - - -
EE [15] + MS G 512 78.1 - 90.3 - 95.8 - - -
Symm [5] + MS BN 512 76.9 - 89.8 - 95.9 - 98.8 -
EE [15] + MS BN 512 77.0 - 89.5 - 96.0 - 98.8 -

M XBM + Contrastive [33] BN 512 79.5 - 90.8 - 96.1 - 98.7 -

Pa
ir

HTL [4] BN 512 74.8 - 88.3 - 94.8 - 98.4 -
RLL-H [32] BN 512 76.1 - 89.1 - 95.4 - - -
Multi-Similarity (MS)† [31] BN 512 76.3 - 89.7 - 96.0 - 98.8 -

SoftTriple [24] BN 512 78.3 - 90.4 - 96.0 - 98.3 -
ProxyGML [36] BN 512 78.0 - 90.6 - 96.2 - - -
Circle [26] BN 512 78.3 - 90.5 - 96.1 - 98.6 -
Softmax BN 512 76.3 - 88.5 - 94.8 - 98.1 -
MemVir + Softmax BN 512 77.8 (+1.5) 89.8 (+1.3) 95.4 (+0.6) 98.4 (+0.3)
Norm-softmax [29] BN 512 78.6 - 90.5 - 96.0 - 98.6 -
MemVir + Norm-softmax BN 512 79.6 (+1.0) 90.9 (+0.4) 96.1 (+0.1) 98.7 (+0.1)
Cosface [30] BN 512 78.6 - 90.4 - 95.8 - 98.5 -
MemVir + Cosface BN 512 79.7 (+1.1) 90.5 (+0.1) 95.8 (0.0) 98.5 (0.0)
Arcface [2] BN 512 78.8 - 90.5 - 95.9 - 98.6 -
MemVir + Arcface BN 512 80.0 (+1.2) 90.9 (+0.4) 96.1 (+0.2) 98.7 (+0.1)
Proxy-NCA [19] BN 512 78.1 - 90.0 - 95.9 - 98.7 -
MemVir + Proxy-NCA BN 512 79.2 (+1.1) 90.4 (+0.4) 96.0 (+0.1) 98.8 (+0.1)
Proxy-anchor† [11] BN 512 78.9 - 90.6 - 96.1 - 98.5 -
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MemVir + Proxy-anchor BN 512 79.7 (+0.8) 91.0 (+0.4) 96.3 (+0.2) 98.6 (+0.1)

-
Average boost - - - (+1.1) - (+0.5) - (+0.2) - (+0.1)
Minimum boost - - - (+0.8) - (+0.1) - (0.0) - (0.0)
Maximum boost - - - (+1.5) - (+1.3) - (+0.6) - (+0.3)

Table I. [Conventional evaluation] Recall@k (%) on Standford Online Products dataset in image retrieval task. Method
type (T) is denoted by abbreviations (Ens: ensemble, Gen: sample generation, M: memory-based, Pair: pair-based losses,
Softmax variant / Proxy: softmax variants and proxy-based losses). Backbone network (Net) also is denoted by abbreviations
(G: GoogleNet [27], BN: BN-Inception [9]). † denotes evaluation in a fair setting described in Section C.2.1.

SOP [21] Concatenated (512-dim) Separated (128-dim)

Loss P@1 RP MAP@R P@1 RP MAP@R

Norm-softmax [29] 75.67 ± 0.17 50.01 ± 0.22 47.13 ± 0.22 71.65 ± 0.14 45.32 ± 0.17 42.35 ± 0.16
MemVir + Norm-softmax 75.77 ± 0.20 50.24 ± 0.22 47.45 ± 0.25 71.97 ± 0.15 45.47 ± 0.14 42.44 ± 0.14
CosFace [30] 75.79 ± 0.14 49.77 ± 0.19 46.92 ± 0.19 70.71 ± 0.19 43.56 ± 0.21 40.69 ± 0.21
MemVir + CosFace 75.88 ± 0.27 49.95 ± 0.37 47.18 ± 0.38 70.25 ± 0.18 43.82 ± 0.20 40.91 ± 0.19
ArcFace [2] 76.20 ± 0.27 50.27 ± 0.38 47.41 ± 0.40 70.88 ± 1.51 44.00 ± 1.26 41.11 ± 1.22
MemVir + ArcFace 76.05 ± 0.30 50.56 ± 0.33 47.75 ± 0.32 71.18 ± 0.27 44.31 ± 0.28 41.26 ± 0.28
Proxy-NCA [19] 75.89 ± 0.17 50.10 ± 0.22 47.22 ± 0.21 71.30 ± 0.20 44.71 ± 0.21 41.74 ± 0.21
MemVir + Proxy-NCA 76.97 ± 0.31 50.81 ± 0.26 48.02 ± 0.27 72.11 ± 0.25 44.82 ± 0.22 41.93 ± 0.18
Proxy-ancho [11] 75.37 ± 0.15 50.19 ± 0.14 47.25 ± 0.15 71.56 ± 0.11 46.13 ± 0.21 43.03 ± 0.21
MemVir + Proxy-anchor 77.80 ± 0.17 53.21 ± 0.12 50.35 ± 0.13 74.30 ± 0.18 48.94 ± 0.16 45.93 ± 0.15

Table J. [MLRC evaluation] Performance (%) on Standford Online Products dataset in image retrieval. We report the
performance of concatenated 512-dim and separated 128-dim. Bold numbers indicate the best score within the same loss.
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