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1. Methods
Implementation Details. In all our experiments, we use
the weights pretrained on MPII [1] for a 2D pose estima-
tion task to initialize both ResNet-50 and HRNet-W32, be-
cause we observe slower convergence with ImageNet pre-
trained weights. For Table 3-5 in the main paper, we train
PARE and our baselines on COCO for 175K steps and eval-
uate on 3DPW and 3DPW-OCC datasets. We then include all
the training data for the SOTA experiment in Table 1 of the
main paper. For Table 2, we use the training data of [17] to
align the experiment settings.

Loss. We use different weight coefficients λ for each term
in the loss function. They are λ3D = 300, λ2D = 300,
λSMPL = 60, λP = 60.

Body Part Segmentation labels. Since we have SMPL
annotations for most of the samples in our datasets, we do
not need additional body part segmentation annotations. We
directly use the SMPL annotations to obtain supervision. In
Fig 1, we visualize this body part labels. For each joint in
the SMPL kinematic tree, we have a corresponding body
part label.

1.  Hips
2.  Left Hip
3.  Right Hip
4.  Spine
5.  Left Knee
6.  Right Knee
7.  Spine-1
8.  Left Ankle
9.  Right Ankle
10. Spine-2
11. Left Toe
12. Right Toe
13. Neck
14. Left Shoulder
15. Right Shoulder
16. Head
17. Left Arm
18. Right Arm
19. Left Elbow
20. Right Elbow
21. Left Hand
22. Right Hand
23. Left Thumb
24. Right Thumb
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Figure 1: Body part segmentation labels used for the 2D
part branch. For each joint in the SMPL kinematic tree,
we have a body part label. Correspondences between joints
(right) and body part labels (left) are shown in this figure.

Occlusion augmentation. In Fig. 2, we demonstrate the
results of synthetic occlusion and random crop augmenta-
tions on two sample images.

Runtime PARE is only 1 ms/image slower than HMR,
with runtime of 14.8ms on a GTX2080Ti.

2. Experiments

2.1. Training Datasets

Our training datasets closely follow previous work,
namely EFT [5], SPIN [8], and HMR [6]. Here we provide
the details for completeness.
MPI-INF-3DHP [12] is a multi-view indoor 3D human
pose estimation dataset. 3D annotations are captured via a
commercial markerless mocap software, therefore it is less
accurate than some of the 3D datasets e.g. Human3.6M [3].
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(a) Original image (b) SMPL annotation (c) Body part segmentation (d) Synthetic occlusion aug. (e) Random crop aug. (f) SMPL after rand. crop aug.

Figure 2: Training samples after synthetic occlusion and random crop augmentations are applied.

We use all of the training subjects S1 to S8 which makes
90K images in total.
Human3.6M [3] is an indoor, multi-view 3D human pose
estimation dataset. Following previous methods, for train-
ing, we use 5 subjects (S1, S5, S6, S7, S8) which means
292K images.
In-the-wild 2D datasets COCO [9], MPII [1] and
LSPET [4] are in-the-wild 2D keypoint datasets. MPII
has 14K, COCO has 75K, LSPET has 7K instances labeled
with 2D keypoints. In addition to 2D keypoint annotations,
we utilize the pseudo SMPL annotations provided by the
EFT [5] method.

Training Dataset Ratios. To obtain the final best per-
forming model, we follow EFT [5] and SPIN [8] which
use fixed data sampling ratios for each batch. After train-
ing 100% with COCO-EFT for 175K steps, we incorporate
50% Human3.6M, 30% In-the-wild (i.e. [COCO, MPII,
LSPET ]-EFT), and 20% MPI-INF-3DHP datasets into
training. We also observe that using [50% Human3.6M,
30% COCO-EFT, 20% MPI-INF-3DHP ] or [20%
Human3.6M, 30% COCO-EFT, 50% MPI-INF-3DHP ]
gives equivalent performance on the 3DPW dataset.

Failure Cases. In Fig. 3, we show a few examples where
PARE fails to reconstruct reasonable human body poses.
The scenarios range from (a-b) too many people in the crop,
(b-d) rarely-seen extreme poses, (e-f) children whose body
shapes cannot be fully explained by the SMPL model, and
(g-h) extreme occlusion.

Comparing to [17]. Zhang et al. [17] parameterize hu-
man meshes as UV maps where each pixel stores the 3D lo-
cation of a vertex. They leverage saliency masks as visibil-
ity information and cast occlusions as an image-inpainting

problem. However, we find that the raw predicted vertex
locations from [17] yield arbitrary global scale, rotation,
translation, and there are no camera parameters associated
with the output. What they show in the main paper are the
post-processed results after fitting a SMPL model, which is
not described in their released implementation; how to vi-
sualize the unprocessed, raw predicted meshes is unclear.
Thus, we bring them to the same camera coordinate frame
as PARE through Procrustes Alignment and overlay them
on the input as shown in Fig. 5(c). One clearly sees mesh
artifacts (red ovals), which is common for non-parametric
models. The requirement of accurate saliency maps cer-
tainly limits the performance of [17] on in-the-wild images.

3DPW

Method MPJPE ↓ PA-MPJPE ↓

Te
m

po
ra

l HMMR [6] 116.5 72.6
Doersch et al. [2] - 74.7
Sun et al. [14] - 69.5
VIBE [7] 93.5 56.5
MEVA [10] 86.9 54.7

PARE (ResNet-50) 82.9 52.3
PARE (HRNet-W32) 82.0 50.9

Table 1: Evaluation on the 3DPW dataset. The numbers
are average joint errors in mm. PARE models outperform
video-based methods which leverage temporal information.
Comparing to state-of-the-art Temporal Models. In
Table 1, we compare PARE to recent state-of-the-art video
based models. To do so, we run a SOTA multi-object tracker
and then run PARE independently on each frame of the
tracklets, with no temporal smoothing. Even the SOTA
video methods have access to extra temporal information,
PARE outperforms them. We show some qualitative results



of VIBE and PARE on some challenging images in Fig 6.
Please see the supplemental video for a better visualization
of the video results (starts at 05:21).

SPIN [8] HMR-EFT PARE

PCK ↑ 81.5 83.4 85.1

Table 2: Evaluation of 2D keypoint project accuracy on
3DPW dataset.

2D keypoint projection accuracy We evaluate the 2D
keypoint accuracy of our method by projecting the 3D key-
points to the image space using the estimated camera pa-
rameters on 3DPW test set. Percentage of correct keypoints
(PCK) is used as the evaluation metric. The results are re-
ported in Table 2.

3. More on visualizing attention of networks

Two new visualizations are proposed in this work: (1)
an occlusion sensitivity map/mesh and (2) a part attention
map. We provide more examples and discussions for both
visualizations. Please see the video for an animation of the
sensitivity analysis, which more clearly illustrates the ap-
proach.

Occlusion Sensitivity. There are many visualization tech-
niques [11, 13, 16, 18] available to inspect what CNNs
learn. We are, however, more interested in studying how
perturbations in the input image affect the output rather than
visualizing the internal filters learned by CNNs. We there-
fore follow the framework of [16] and replace the classifi-
cation score with an error measure for body poses, as de-
scribed in the main paper. We choose MPJPE as the error
measure without Procrustes Alignment, because PA-MPJPE
leads to artificially low error by aligning global orientations,
which are a major source of error.

This analysis is not limited to a particular network ar-
chitecture so we also apply it on PARE and visualize the
error maps together with those from SPIN [8] in Fig. 7.
Warmer colors correspond to higher MPJPEs w.r.t. ground
truth when those pixels are occluded, suggesting that meth-
ods rely on the regions to estimate body poses. One clearly
sees that PARE is more robust to localized part occlusion.
Please see the video for animation (starts at 00:53).

Additionally, we also map the per-pixel error to the
overlaying 3D vertex, and aggregate over the whole 3DPW
dataset [15]. In this way, we visualize the per-joint error on
the SMPL template mesh, which we term the occlusion sen-
sitivity mesh. Fig. 8 shows the occlusion sensitivity mesh
for four different joints and averaged over all joints from
both SPIN and PARE. We again observe that SPIN is very

sensitive to localized part occlusion. For example, occlu-
sions of right arm or face regions result in high error for
right wrist. On the other hand, occlusion sensitivity meshes
of PARE have more consistent cold colors over the body,
again confirming that it is more robust to partial occlusion.

Part Attention. We also visualize the estimated part at-
tention P before softmax in Fig. 9 for four sample im-
ages from 3DPW [15]. When body parts are visible, the
shapes of warm regions resemble part segmentation labels,
which means the network focuses on body part regions
(e.g. Left/Right Knee and Ankle in the third row). For nat-
urally occluded body parts, the attended regions get wider,
covering other parts and the scene. This suggests that PARE
implicitly learns to reason about the visibility of body parts
and leverages available information to solve the task. In par-
ticular, Fig. 4 illustrates the progression of attention maps
during training for two occluded parts Left/Right Ankles.
We see that deactivating the part supervision helps attention
maps to focus on more meaningful and explainable regions.

In addition to part attention maps, we also visualize the
results as segmentation maps in Fig. 10. We visualize the
results of two different models; (a) a model trained with
full part segmentation supervision, (b) a model trained with
part segmentation initially and unsupervised for the final
stages. Note that part segmentation IoU decreases signif-
icantly when we do not use part segmentation, however we
see an increase in body reconstruction accuracy especially
in the case of occlusion.
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Figure 3: Challenging scenarios where PARE fails to produce fairly good reconstructions.

Left ankle Right ankle

(c) Left ankle (d) Right ankle(a) Left ankle (b) Right ankle
Training step 125K Training step 200K

Figure 1: Attention map progression during training. Training continues with body-part supervision until step 125K (a-b) and without 
supervision until 200K (c-d). Final attention maps of occluded parts focus on parents which allow to sample more meaningful features.

Figure 4: Attention map progression during training. Train-
ing uses body-part supervision only until step 125K (a-b).
Note that the final attention maps for occluded parts (at
200K (c-d)) focus on visible parents.
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(a) SPIN (b) HMR-EFT (c) Zhang et al. [17] (d) PAREInput

Figure 5: Qualitative comparison. Here, we compare PARE with recent state-of-the-art methods i.e. SPIN [8], HMR-
EFT [5], and Zhang et al. [17].



Input Image (b) PARE result(a) VIBE result

Figure 6: Comparison of VIBE [7] with our method, PARE. Note that VIBE is a video-based method, while PARE is run on
each video frame independently.
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(a) Input Image (b) SPIN [1] (c) SPIN [2]
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(d) SPIN Occlusion Sensitivity Heatmap

(e) PARE [1] (f) PARE [2]
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(g) PARE Occlusion Sensitivity Heatmap
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(a) Input Image (b) SPIN [1] (c) SPIN [2]
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(a) Input Image (b) SPIN [1] (c) SPIN [2]

1
2

(d) SPIN Occlusion Sensitivity Heatmap

(e) PARE [1] (f) PARE [2]

1
2

(g) PARE Occlusion Sensitivity Heatmap

100

120

140

160

180

200

220

M
ea

n
 jo

in
t 

er
ro

r 
(m

m
)

Figure 7: Occlusion Sensitivity Maps of SPIN [8] and PARE



All joints

Head

Left Ankle

Left Elbow

Right Wrist

SPIN PARE

Figure 8: Occlusion sensitivity meshes per joint.



(a) Input Image Hips Left Knee Right Knee Left Ankle Right Ankle Neck Left Shoulder

(b) PARE result Right Shoulder Left Arm Right Arm Left Elbow Right Elbow Left Hand Right Hand

(a) Input Image Hips Left Knee Right Knee Left Ankle Right Ankle Neck Left Shoulder

(b) PARE result Right Shoulder Left Arm Right Arm Left Elbow Right Elbow Left Hand Right Hand

(a) Input Image Hips Left Knee Right Knee Left Ankle Right Ankle Neck Left Shoulder

(b) PARE result Right Shoulder Left Arm Right Arm Left Elbow Right Elbow Left Hand Right Hand

(a) Input Image Hips Left Knee Right Knee Left Ankle Right Ankle Neck Left Shoulder

(b) PARE result Right Shoulder Left Arm Right Arm Left Elbow Right Elbow Left Hand Right Hand

Figure 9: Part attention maps.



(a) Part segmentation results with full part supervision (b) Part segmentation results with part supervision + unsupervised

Figure 10: Part segmentation results in two different scenarios: (a) full part segmentation supervision is applied during
training, (b) part segmentation supervision is applied at the initial stages and training is continued without part supervision.
At the top of each result, we denote the part segmentation IoU, MPJPE and PA-MPJPE. Notice how part segmentation IoU
decreases, but per-joint accuracy improves.
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