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Figure 1: Comparison of two methods trained with the identical setting except for the camera models. (b) considers standard
IWP-cam, while (c) is the proposed SPEC, which uses the additional camera parameters estimated by CamCalib.
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1. Methods
1.1. Formulation of per-body translation ¢

For each body in the image, besides SMPL parameters 0, (3,
SPEC also estimates camera parameters (s, tz,ty), which is de-
fined w.r.t. the bounding box (bbox) of the subject. Similar to
[4, 7], we perform a coordinate transformation to obtain the final
t? vector w.r.t. the original full image following:
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where (cg, cy) is the bbox center, w, h are originial image sizes,
Whboe, Nbbor are bbox sizes, and focal length f is estimated by

CamCalib. As explained in the main text, Eq. 3, t° is used during
perspective projection IT = K[R°| — t].

1.2. Softargmax-£, and Softargmax-biased-..

As described in the main manuscript, we follow [22] to dis-
cretize the spaces of pitch «, roll ¢ and vertical field of view
(vfov) v into B = 256 bins but avoid casting it as a pure clas-
sification problem. To this end, we propose Softargmax-L> loss
and the biased variant. Let ¢ = [o1,...q5,...aB], ¢ =
[P1,. .- Piy... 0¢8], and v = [v1,...vs,...vp] denote the cen-
ter values of each of the bins, and let p* = [pf,...p§,...p%]

p? = [pf,...pf,...p%], and p* = [p{,...p7,..
the probability mass from the fully-connected layers of each head
respectively. We compute the expectation value of the probability
mass as the prediction:
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This differentiable operation has been commonly-used in human
joint detection [12, 19] to determine the peak location in a likeli-
hood heat map, in contrast to the non-differentiable argmax oper-
ation.

For pitch « and roll ¢ angles, we apply the standard L2 loss
between the prediction and the ground truth. To encourage un-
derestimation of vfov v more than overestimation, we design an



asymmetric loss as depicted in Fig. 3 in the main text; formally:
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We verify the benefits of these design choices in Table 1 in the
main text.

1.3. Virtual ground plane

In all qualitative results, we visualize a virtual ground
plane with a checkerboard, which is parallel to the xz-plane
and therefore parameterized as [0,y,0]. We define y =
min (M(0, B)[:, 2]), i.e. we place the ground plane just below the
SMPL mesh.

This simple parameterization is feasible because we disentan-
gle the camera rotation R° from the body orientation R®. For
SOTA methods that apply the IWP-cam model, the virtual ground
planes are often tilted. As a result, it requires further processing
to estimate the up-vector, or conversely, the direction of gravity,
making it non-trivial to integrate the reconstructed bodies for some
downstream applications, e.g. scene understanding, character ani-
mation, physics simulation. SPEC, on the other hand, reconstructs
bodies in the world coordinate frame with a consistent up vector
[0, 1,0], which is more physically plausible when visualized to-
gether with the ground plane. See Sup. Mat. video.

1.4. SMPLify-X-Cam

To integrate the estimated camera parameters from CamCalib
into an optimization-based method, we use the original implemen-
tation of SMPLify-X [17] with slight modifications. We replace
the IWP-cam with the estimated K and R as described in Sec. 3.3
of the main text. Additionally, we initialize the optimization with
the output of HMR-EFT [5], instead of starting from a mean pose
and a mean shape. We use the Adam optimizer with a step size of
102 for 100 steps for both the first and second stage of optimiza-
tion. The results of SMPLify-X-cam are evaluated in Sec. 3.4.

2. Implementation Details
2.1. SPEC-MTP Dataset

Miiller et al. [15] propose a “Mimic The Pose” (MTP) task to
collect datasets of natural images with high-quality pseudo ground
truth body parameters from Amazon Mechanical Turk (AMT).
Each image shows a person mimicking a posed SMPL-X mesh
presented to them on AMT. Miiller et al. devise a three-stage opti-
mization routine, SMPLify-XC, to fit the SMPL-X model to each
image. Itis based on the default SMPLify-X [17] but considers ad-
ditionally the pose 6 and self-contact C of the presented SMPL-X
mesh to constrain the optimization. The body parts in self-contact
are identified by finding vertices that are close in Euclidean and
far in geodesic space. Please see [15] for a detailed definition of
self-contact.

We follow the MTP approach but add two distinctions in order
to obtain ground truth camera parameters: (1) Instead of getting
a single picture for each pose, we ask AMT subjects to record
a video showing the pose from multiple viewpoints, similar to
Mannequin-Challenge style [10]. (2) We also ask them to print

out a calibration pattern and record a video of the grid following
a detailed protocol. In addition, we ask them to measure the size
of the grid and take a picture of the grid and a ruler to verify the
measured values.

To fit SMPL-X pose 0 and shape 3, as well as camera pitch
«, roll ¢, yaw 1, and camera translation ¢° to the collected
MTP videos, we extend SMPLify-XC and introduce SMPLify-
XC-Cam. We follow the three-stage optimization routine. In the
first stage, body pose 0 is initialized as the poses of the presented
mesh, 0 = 6, and stays fixed in this stage. The objective is:
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En denotes the SMPLify-XC shape loss, that takes the ground

truth height and weight of a person into account.
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is the 2D re-projection error of a single frame ¢ with detected 2D
joints J2p,, and camera rotation Rf and translation ¢§. w; andy
are per joint confidence and weight, respectively. F' is the number
of frames per video, extracted at one frame per second.

In the second and the third stage, we freeze body shape 5 and
refine the pose 6 and camera parameters by minimizing:
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En, . Ej, E&, Es denote the hand and presented pose priors, the
presented contact loss and the general contact loss as defined in
[15], respectively. Fig. 2 shows several examples of SPEC-MTP
frames and the computed SMPL-X fit. SPEC-MTP is used only
for evaluation.

2.2. SPEC-SYN Dataset

We obtain the 3D scans and SMPL-X fits to those scans from
the AGORA dataset [16]. This includes many high-quality 3D
scans of clothed people with accurate SMPL-X ground truth shape
and pose. We convert the SMPL-X model to the SMPL format.
We then put these scans in 3D scenes and use Unreal engine [2]
to generate photorealistic images with diverse fields of view (fov)
and camera rotations. Fig. 3 shows several examples, with SMPL
fits overlaid on the images. One can observe some perspective
distortion at the image boundary in the 3rd and 4th rows, indicat-
ing large fov (small focal length); the first and the last row show
examples with high camera pitch angles.

2.3. Pano360 Dataset

To generate training dataset from equirectangular panorama
images, we follow the strategy of Zhu et al. [22]. We crop images
from panorama images with random viewpoints and focal lengths.
Fig. 4 shows a sample panorama image along with the cropped
images.



(a) Input Image / (b) SPEC-MTP
2D keypoints annotation overlay

(¢) SPEC-MTP annotation sideviews

Figure 2: SPEC-MTP benchmark samples.



(b) Annotations

(a) Rendered Image

SYN dataset samples.
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(a) Full panorama image

(b) Random viewpoints

Figure 4: Pano360 dataset. Random viewpoints (b) from a single equirectangular panorama image (a). Horizon annotations
are shown in red line.



3. Experiments
3.1. Training Datasets

In addition to SPEC-SYN dataset which is described in main

text, we use datasets explained below for training.
MPI-INF-3DHP [13] is a multi-view indoor 3D human pose es-
timation dataset. 3D annotations are captured via a commercial
markerless mocap software, therefore it is less accurate than some
of the 3D datasets e.g. Human3. 6M [3]. We use all of the training
subjects S1 to S8 which makes 90K images in total.
Human3.6M [3] is an indoor, multi-view 3D human pose estima-
tion dataset. Following previous methods, for training, we use 5
subjects (S1, S5, S6, S7, S8) which means 292K images.
COCO [11] dataset is a 2D keypoint dataset. In addition to 2D
keypoint annotations, we utilize SMPLift-X-cam and CamCalib
method to obtain SMPL and camera parameters annotations. We
initialize the SMPLify-X-cam with SMPL fits provided by EFT [5]
method.

Training Dataset Ratios. To obtain the final best performing
model, we follow EFT [5] and SPIN [8] which use fixed data sam-
pling ratios for each batch. We first train SPEC with 50% SPEC-
SYN, 50% COCO for 175K steps. Then, we continue training
with 20% Human3.6M, 20% MPI-INF-3DHP, with 50% SPEC-
SYN, and 50% COCO for around 50K steps until convergence.

3.2. CamCalib Qualitative Results

In Fig. 5, we show the qualitative results of CamCalib. We
follow [22] to visualize the estimated camera rotation by drawing
the estimated horizons (red dashed lines). If the camera is pointing
down (pitch angle o > 0), the horizon should appear in the upper
half of the image. Tilting to the left or right indicates the camera
roll. CamCalib estimates reasonable camera parameters for most
examples. We also show the failure cases in Fig. 6. We observe
that they are all portrait images in which background contain little
information for estimating camera parameters. We remark that
despite no rich information in the background, human bodies still
provide useful cues for the calibration purpose and we leave this
to the future work.

3.3. SPEC MPJPE/PVE Results and Discussions

Table 1 to 3 summarize the performance of SPEC in compari-
son to SOTA methods on three datasets: SPEC-MTP, SPEC-SYN,
and 3DPW. In addition to the three metrics, W-MPJPE, PA-MPJPE
and W-PVE that are already reported in the main paper, we also in-
clude MPJPE and PVE here. The two versions of W-MPJPE and
W-PVE are defined in Sec. 4.2 in the main text.

First, we observe that SPEC yields better “pure body pose”
according to the improved PA-MPJPE. Moving onward, a 3DHPS
method should learn not only to reconstruct body poses and shapes
but also to place and orient them properly in the space. To this end,
MPIJPE and PVE are often considered stricter than the Procrustes-
aligned counterparts as they measure additionally discrepancies in
rotation. SPEC also outperforms SOTA methods [8, 9, 14, 18]
in MPJPE/PVE, but yield on-par or slightly worse results than
HMR*, which is an IWP-cam baseline trained under the identical
setting as SPEC.

Methods | MPJPE | W-MPJPE | PA-MPJPE | W-PVE | PVE
GraphCMR [9] 150.9 | 175.1/166.1 94.3 | 205.5/197.3 | 179.9
SPIN [8] 129.4 | 143.8/143.6 79.1 | 1652/165.3 | 1482
PartialHumans [18] | 150.1 | 158.9/157.6 98.7 | 190.1/188.9 | 177.8
2L-MeshNet! [14] | 1555 | 167.2/167.0 99.2 | 199.0/198.1 | 184.4
HMR* [6] 109.0 | 142.5/128.8 71.8 | 164.6/150.7 | 127.6
SPEC 116.1 | 124.3/124.3 718 | 147.1/147.1 | 136.4

Table 1: Results of SOTA methods on MTP-Cam dataset.
We use the implementations provided by the authors to ob-
tain results. HMR* means that we train HMR using the
same data as SPEC for fair comparison. "means we use the
SMPL output of this method instead of the non-parametric
mesh to be able to report W-PVE. All numbers are in mm.

Methods | MPJPE | W-MPJPE | PA-MPJPE | W-PVE | PVE
GraphCMR [9] 179.8 | 181.7/181.5 86.6 | 219.8/218.3 | 216.8
SPIN [8] 159.6 | 165.8/161.4 79.5 | 194.1/188.0 | 186.3
PartialHumans [18] | 172.6 | 169.3/174.1 88.2 | 207.6/210.4 | 209.0
I2L-MeshNet' [14] 161.7 | 169.8/163.3 82.0 | 203.2/195.9 | 1945
HMR* [6] 92.8 | 128.7/96.4 55.9 | 144.2/111.8 | 108.1
SPEC 749 | 749/74.9 545 | 90.5/90.5 | 90.5

Table 2: Results of SOTA methods on AGORA-cam. See
Table 1 caption.

Methods | MPJPE | W-MPJPE | PA-MPJPE | W-PVE | PVE
GraphCMR [9] 121.2 | 137.8/129.4 69.1 | 158.4/152.1 | 139.3
SPIN [§] 96.9 | 122.2/116.6 59.0 | 140.9/135.8 | 129.8
Partial Humans [18] 126.5 | 139.4/132.9 76.9 | 160.1/152.7 | 1445
I2L-MeshNet" [14] 100.0 | 133.3/119.6 60.0 | 154.5/141.2 | 129.5
HMR* [6] 92.5 | 119.2/104.0 53.7 | 136.2/120.6 | 109.5
SPEC 96.5 | 106.4/106.4 53.2 | 127.4/127.4 | 1185

Table 3: Results of SOTA methods on 3DPW test set. See
Table 1 caption.

Note that MPJPE and PVE are typically computed in the cam-
era space. One needs to transform the ground truth bodies using
the camera extrinsics provided by the datasets, and thus the error
encodes dataset-specific camera information. However, existing
benchmarks, e.g., MPI-INF-3DHP, Human3.6M and 3DPW are
often captured with little variation in camera parameters. As a re-
sults, MPJPE and PVE cannot clearly reflect the performance of
a IWP-cam method for in-the-wild scenarios where camera types
and viewpoints are diverse and unknown. We advocate W-MPJPE
and W-PVE because they also measure discrepancies in rotation,
but unlike MPJPE/PVE, they are computed in world coordinates,
assuming no access to camera information. In W-MPJPE and W-
PVE, SPEC again outperforms SOTA methods [8, 9, 14, 18] and
yield consistently better results than HMR™ on datasets captured
with diverse camera parameters — SPEC-MTP and SPEC-SYN.
Even on 3DPW which is captured with single focal length value,
SPEC attains improved or on-par results than HMR*.

3.4. SMPLify-X-cam Results

Table 4 and 5 summarize the performance of SMPLify-X-cam
in comparison to the baseline SMPLify-X method. The same 2D
keypoint detections from [1] are used for all the reported meth-
ods. We compare the default SMPLify-X with f = 5000 [17],
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Figure 5: CamCalib qualitative results.
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Figure 6: CamCalib failures.

the setting considered by Kissos et al. [7] where f = 2200, and
the setting which uses CamCalib estimated K and R°. We ob-
serve a consistent improvement in W-MPJPE and W-PVE when
R° is used. This is due to correct global orientation reconstruction
w.r.t. world coordinates. On SPEC-SYN, using K improves the
PA-MPIJPE due to more accurate projective geometry. 3DPW is
captured with a single camera where f = 1962 so it is not a good
dataset with which to evaluate the effect of focal length. Even
in this case, SMPLify-X-cam improves the results over the de-
fault setting and the PA-MPJPE result is on par with results using
f = 2200. The f = 2200 approximation is already close to the
single focal length used in 3DPW dataset f = 1962, consequently
it does well. As a reference, the average CamCalib focal length
error is 360 and 246 pixels on 3DPW and SPEC-SYN datasets,
respectively.

To further analyze the impact of focal length on body recon-
structions, we run SMPLIity-X on SPEC-SYN with focal lengths
perturbed from the real ground truth values and plot the W-MPJPE
trend in Fig. 7 (blue curve). We see that the quality of HPS are sen-
sitive to underestimated focal lengths and less sensitive to over-
estimation, as also reported in [7, 21]. In addition, we visualize

! WlieW = Ton 1
pitchy=r86e pitch = —18.1%
roll = 14.0° roll = —4.9°
Methods | W-MPJPE | PA-MPJPE | W-PVE
SMPLify-X (ground-truth f) | 131.9/114.6 | 733 | 151.5/1334
SMPLIify-X [17] (f = 5000) ‘ 168.9/149.5 ‘ 77.1 ‘ 191.5/172.8
SMPLify-X [7] (f = 2200) 155.6/133.5 75.6 | 176.9/155.3
SMPLify-X (CamCalib K) 136.5/116.4 ‘ 73.0 ‘ 156.3/135.8
SMPLify-X-cam (CamCalib K + R°) | 115.2/115.2 73.5 | 135.0/135.0

Table 4: HPS optimization with an estimated camera.
SMPLIify-X-cam on the AGORA-cam dataset.

default SMPLify-X (f = 5000) and SMPLify-X (CamCalib K)
according to the corresponding W-MPJPE in Table 4. One can see
that in average, with the focal lengths from CamCalib, body recon-
structions are closer to the low-error basin of small perturbations,
i.e. closer to the true focal lengths. Note that, the averaged focal
length in SPEC-SYN is 840 pixels, so the averaged error of 246
pixels (29%) confirms again that SMPLify-X-cam is relatively ro-
bust when the estimated focal length ranges between 0.7 and 1.3
times the true one.
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Figure 7: Sensitivity of SMPLify-X to focal length pertur-
bation on SPEC-SYN dataset. Using CamCalib estimated
f yields better results. Body reconstruction accuracy is
less sensitive to larger focal lengths. Therefore, we propose
Softargmax-biased-Ls loss.

Methods | W-MPJPE | PA-MPJPE | W-PVE
SMPLify-X (ground-truth f) | 1249/95.0 | 55.4 | 146.9/120.0
SMPLify-X [17] (f = 5000) 123.8/94.7 57.7 | 144.8/119.8
SMPLify-X [7] (f = 2200) 124.8/94.4 55.5 | 146.7/119.6
SMPLify-X (CamCalib K) 125.5/95.4 55.7 | 147471203
SMPLify-X-cam (CamCalib K + R®) | 95.5/95.5 55.8 | 120.4/120.4

Table 5: HPS optimization with an estimated camera.
SMPLIify-X-cam on the 3DPW validation set.

Methods | W-MPJPE | PA-MPJPE | W-PVE
HMR* 112.7/97.2 62.3 | 133.1/115.6
HMR* + ¢ 115.4/97.3 622 | 135.9/116.9
HMR* + ¢ + f 112.1/96.1 614 | 134.1/113.6
HMR* + ¢+ f+ R® | 102.7/102.7 60.2 | 124.0/124.0
SPEC 98.1/98.1 59.9 | 119.3/1193

Table 6: Ablation experiments on SPEC with 3DPW vali-
dation set. ¢: using the image center as camera center; f
and R°: using CamCalib estimated focal length and camera
rotation, respectively. All numbers are in mm.

3.5. Ablation study on SPEC with 3DPW

The Table 5 in the main text provides an ablation study on
SPEC using the SPEC-SYN dataset, which dissects the improve-
ment over the baseline HMR™ in various aspects: using the orig-
inal image center as the principal point, using the CamCalib esti-
mated focal length, using the estimated rotations, and lastly condi-
tioning the network with the estimated cameras (SPEC). We repeat
this here on the common 3DPW benchmark as in Table 6. Despite
that it is not a suitable dataset to analyze the impact of each camera
parameters, we still observe that appending the estimated cameras
to the image feature leads to improvement in five metrics (c.f. the
last two rows), so does using the estimated focal length (HMR™ +
c+ fvs. HMR" + ¢).

Methods | MPJPE | PA-MPJPE
Want et al. [20] 89.7 65.2
SPEC w. 3DPW 96.4 527

Table 7: Comparison to Wang et al. [20]. Here both meth-
ods are trained with 3DPW training set for a fair compari-
son.

3.6. Comparison to Wang et al. [20]

Wang et al. [20] train their methods on 3DPW training set. We
also train SPEC on 3DPW to make a comparison to their method.
Results are denoted in Table 7. SPEC outperforms Wang et al. [20]
in terms of PA-MPJPE metric, but performs poorly in MPJPE.
This is due to the use of estimated camera parameters in SPEC’s
evaluation. We argue that SPEC would perform better with W-
MPIJPE metric, however a comparison is not possible since the
code of Wang et al. [20] is not available.

3.7. Qualitative results of SPEC

In Fig. 8, we show several qualitative results from SPEC. One
can observe that SPEC yields on-par or more physically plausi-
ble reconstructed bodies than the baseline that is trained with the
identical setting. For more clear illustration, please see the 360°
visualizations in Sup. Mat. video.

The failure cases of SPEC are shown in Fig. 9. We observe that
some examples share similar traits as those in Fig. 5: portrait im-
ages with limited background information. The error of SPEC can
be partially attributed to the error from CamCalib. Other scenarios
include rarely-seen viewpoints or poses that are not observed in
the training data.
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Figure 8: SPEC qualitative results.
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Figure 9: SPEC failures.
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