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Outline

As elaborated in the main paper, our proposed Open-
GAN trains an open-vs-closed binary classifier for open-
set recognition. Our three major technical insights are (1)
model selection of a GAN-discriminator as the open-set
likelihood function via validation, (2) augment the avail-
able set of real open training examples with adversarially
synthesized “fake” data, and (3) training OpenGAN on off-
the-shelf (OTS) features rather than pixel images. We ex-
pand on the techniques of OpenGAN in the appendix, in-
cluding architecture design, model selection and additional
details for training. We also provide additional compar-
isons to recently published methods and qualitative results.
Below is the outline.

Section 1: Model architectures for both OpenGANfea

and OpenGANpix.

Section 2: Detailed setup for open-set semantic seg-
mentation, such as data statistics (e.g., the number of open-

set pixels in the testing set) and batch construction during

training.

Section 3: Model selection that is performed on a vali-

dation set.

Section 4: Hyper-parameter tuning which is per-

formed on a validation set.

Section 5: Statistical methods for open-set recogni-
tion that learn generative models (e.g., Gaussian Mixture)

over off-the-shelf deep features.

Section 6: More quantitative comparisons to several

approaches published recently.

Section 7: Visuals of synthesized images generated

by OpenGAN-0pix and OpenGAN-0fea, intuitively demon-

strating their effectiveness and limitations.

Section 8: Visual results of open-set semantic seg-
mentation.

Section 9: Failure Cases and Limitations.

1. Model Architecture
We describe the network architectures of OpenGAN. Be-

cause our final version OpenGANfea operates on off-the-

shelf (OTS) features, we use multi-layer perceptron (MLP)

networks for the generator and discriminator. Because

OpenGANpix operates on pixels, we make use of convolu-

tional neural network (CNN) architectures. We begin with

the former.

1.1. OpenGANfea architecture

OpenGANfea consists of a generator and a discrimi-

nator. OpenGANfea is compact in terms of model size

(∼2MB), because it adopts MLP network over OTS features

which are low-dimensional (e.g., 512-dim vectors) com-

pared to pixel images. The MLP architectures are described

below

• The MLP discriminator in OpenGANfea takes a

D-dimensional feature as the input. Its architec-

ture has a set of fully-connected layers (fc marked

with input-dimension and output-dimension), Batch

Normalization layers (BN) and LeakyReLU lay-

ers (hyper-parameter as 0.2): fc (D→64*8),
BN, LeakyReLU, fc (64*8→64*4),
BN, LeakyReLU, fc (64*4→64*2),
BN, LeakyReLU, fc (64*2→64*1), BN,
LeakyReLU, fc (64*1→1), Sigmoid.

• The MLP generator synthesizes a D-dimensional

feature given a 64-dimensional random vec-

tor: fc (64→64*8), BN, LeakyReLU,
fc (64*8→64*4), BN, LeakyReLU,
fc (64*4→64*2), BN, LeakyReLU,
fc (64*2→64*4), BN, LeakyReLU, fc
(64*4→D), Tanh.

For open-set image classification, the image features

have dimension D = 512 from ResNet18 (the K-way clas-

sification networks under Setup-I and II). For open-set seg-

mentation, the per-pixel features have dimension D = 720
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Figure 1: Cityscapes annotates a sizeable portion of pixels that

do not belong to one of the K closed-set classes on which the

Cityscapes benchmark evaluates. As a result, many methods also

ignore them during training [29]. We repurpose these historically-

ignored pixels as open-set examples that are from the (K+1)th

“other” class, allowing for a large-scale exploration of open-set

recognition via semantic segmentation.

at the penultimate layer of HRnet (a top-ranked semantic

segmentation model used in this work under Setup-III).

1.2. OpenGANpix architecture

OpenGANpix’s generator and discriminator follow the

CycleGAN architecture[32]. We change the stride size in

the convolution layers to adapt the networks to specific

image resolution (e.g., CIFAR 32x32 and TinyImageNet

64x64). The generator and discriminator in OpenGANpix

have model sizes as ∼14MB and ∼11MB, respectively. We

find it important to ensure that OpenGANpix has a larger

capacity than OpenGANfea to generate high-dimensional

RGB raw images.

2. Setup for Open-Set Semantic Segmentation

In this work, we use Cityscapes to study open-set se-

mantic segmentation. Prior work suggests pasting virtual

objects (e.g., cropped from PASCAL VOC masks [8]) on

Cityscapes images as open-set pixels [4, 16]. We notice

that Cityscapes ignores a sizeable portion of pixels in its

benchmark, as demonstrated by Figure 1. As a result,

many methods also ignore them in training. Therefore, in-

stead of introducing artificial open-set examples, we use the

historically-ignored pixels in Cityscapes as the real open-set

examples. We hereby describe in detail our configuration

for open-set semantic segmentation setup and experiments

on Cityscapes.

Data Setup. Cityscapes training set has 2,975 images.

We use the first 2,965 images for training, and hold out the

last 10 as validation set for model selection. We use the 500

Cityscapes validation images as our test set. Here are the

statistics for the full train/val/test sets.

• train-set for closed-pixels: 2,965 images providing

334M closed-set pixels.

Figure 2: Void pixels in Cityscapes that are not from the closed-

set classes nor open-set. We highlight these pixels over an image

(left) and its semantic annotations (right). Cityscapes labels these

pixels as rectification-border (artifacts at the image bor-

ders caused by stereo rectification), ego-vehicle (a part of the

car body at the bottom of the image including car logo and hood)

and out-of-roi (narrow strip of 5 pixels along the image bor-

ders). These noise-pixels can be easily identified without machine-

learned methods. Therefore, we do not evaluate on these pixels.

• train-set for open-pixels: 2,965 images providing 44M

open-set pixels.

• val-set for closed-pixels: 10 images providing 1M

closed-set pixels.

• val-set for open-pixels: 10 images providing 0.2M

open-set pixels.

• test-set for closed-pixels: 500 images providing 56M

pixels.

• test-set for open-pixels: 500 images providing 2M pix-

els.

Note that, we exclude the pixels labeled with

rectification-border (artifacts at the image bor-

ders caused by stereo rectification), ego-vehicle (a part

of the car body at the bottom of the image including car

logo and hood) and out-of-roi (narrow strip of 5 pix-

els along the image borders). These pixels can be easily

localized using camera information. We demonstrate such

pixels in Figure 2. In this sense, these pixels are not un-
known open-set pixels but known noises caused by sensors

and viewpoint. Therefore, we do not include them for open-

set evaluation.

Feature setup.

• Mpix, where M ∈ {CLS, OpenGAN}, corresponds to

a model defined on raw pixels.

• Mfea corresponds to a model defined on embedding

features at the penultimate layer of underlying seman-



tic segmentation network (i.e., HRNet as introduced

below).

• HRNet [29] is a top-ranked semantic segmentation

model on Cityscapes. It has a multiscale pyramid head

that produce high-resolution segmentation prediction.

We extract embedding features at its penultimate layer

(720-dimensional before the 19-way classifier). We

also tried other layers but we did not observe signif-

icant difference in their performance.

Batch Construction. To fully shuffle open- and closed-

set training pixels, we cache all the open-set training pixel

features extracted from HRNet. We construct a batch con-

sisting of 10,000 pixels for training OpenGANfea. To do

so, we

• randomly sample a real image, run HRNet over it and

randomly extract 5,000 closed-set training pixel fea-

tures;

• randomly sample 2,500 open-set training features from

cache;

• run the OpenGANfea generator (being trained on-the-

fly) to synthesize 2,500 “fake” open-set pixel features.

Similarly, to train OpenGANpix which is fully-

convolutional, we construct a batch of 10,000 pixels

as below.

• We feed a random real image to the OpenGANpix dis-

criminator, and penalize predictions on 5000 random

closed pixels and 2500 random open pixels.

• We run the OpenGANpix generator (being trained on-

the-fly) to synthesize a “fake” image. We feed this

“fake” image to the discriminator along with open-set
labels. We penalize 2500 random “fake” pixels.

3. Model Selection
Due to the unstable training of GANs [1], model selec-

tion is crucial and challenging. GANs are typically used for

generating realistic images, so model selection for GANs

focuses on selecting generators. To do so, one relies heav-

ily on manual inspection of visual results over the gener-

ated images from different model epochs [12]. In contrast,

we must select the discriminator, rather than the generator,

because we use the discriminator as an open-set likelihood

function for open-set recognition. It is important to note

that, in theory, a perfectly trained discriminator would not

be capable of recognizing fake open-set data because of the

equilibrium in the discriminator/generator game [2]. Al-

though such an equilibrium hardly exist in practice, we find

it crucial to select GAN discriminators to be used as open-

set likelihood function. For model selection, we further find

it crucial to use a validation set that consists of both real

open and closed data. We present this study below.

Model selection is crucial. In Figure 3, we plot the

open-set classification performance as a function of train-

ing epochs. We study both OpenGAN-0fea and OpenGAN-

0pix on the three datasets as typically used in open-set

recognition (under Setup-I). Recall that OpenGAN-0 is to

train a normal GAN and use its discriminator as open-set

likelihood function for open-set recognition. Clearly, we

can see that long training time does not necessarily improve

open-set classification performance. We posit that this is

due to the unstable training of GANs. This motivates robust

model selection using a validation set.

Synthesized data are not sufficient for model selec-
tion. To study how each checkpoint models perform in

training (fake-vs-real classification) and testing (open-vs-

closed classification), we scatter-plot Figure 4, where we

render the dots with colors to indicate the model epoch

(blue→ red dots represent model epoch-0→50, respec-

tively). For the scatter plot, the ideal case is that the train-

time and test-time performance is linearly correlated, i.e.,

all dots appear in the diagonal line (from origin to top right).

But their performances on the two sets are not correlated,

suggesting that using the synthesized data for model se-

lection is not sufficient. Instead, we find it crucial to use

a validation set of real open examples to select the open-

set discriminator. Our observation is consistent to what re-

ported in [18]. It is worth noting that the models selected on

the validation set do generalize to test sets. This has been

demonstrated in Table 3 and 4 in the main paper.

4. Hyper-Parameter Tuning
Strictly following the practice of machine learning, we

tune hyper-parameters on the same validation set. We now

study parameter tuning through open-set semantic segmen-

tation (Setup-III). We select the best OpenGAN model ac-

cording to the performance on the validation set (10 im-

ages).

In training OpenGAN, a training batch contains both real

closed- and open-set pixels, and synthesized fake open pix-

els. Correspondingly, our loss function has three terms (re-

fer to Eq. 2 in the main paper). Therefore, we tune the

hyper-parameter λo and λG as below to balance the terms

in the loss function that exploits real open data and gener-

ated data:

• The term exploiting real open data has a weight λo =
1. We do not tune this as we presume the sparsely

sampled open-set examples are equally important as

the real closed-set examples.

• The term using the generated “fake” data has varied



Figure 3: Open-set image recognition performance vs. training epochs. We show the performance (AUROC) by OpenGAN-0pix and

OpenGAN-0fea on the val-sets of the three datasets which are widely studied in the open-set recognition literature (Setup-I). Recall that

OpenGAN-0 is to train a normal GAN and use its discriminator as open-set likelihood function for open-set recognition. We can see that

best open-set discrimination performance is achieved by intermediate checkpoints of GAN discriminators, and longer training does not
necessarily improve performance. This is due to the unstable training of GANs with the min-max game. This motivates the need for robust

model selection.

Figure 4: Scatter plot of training performance (fake-vs-real classification) and testing performance (open-vs-closed classification).
We color the dots from blue→ red to marks models saved at epoch-0→50, respectively. We use the three datasets (under Setup-I) following

the typical setup of open-set recognition. The ideal correlation is that all the dots lie in the diagonal from bottom-left to top-right. However,

there is no correlation between training (fake-vs-real) and validation (open-vs-closed) performance. Moreover, because the dots appear to

be on the right part in the plots, this means that fake-vs-real classification (as denoted by the x-axis) is much easier than open-vs-closed

classification (as denoted by the y-axis). These scatter plots demonstrate that (1) intermediate discriminators can perform quite well in

open-set discrimination (i.e., on the validation set consisting of real open and closed-set images), and (2) synthesized data are insufficient

to be used for model selection.



Table 1: Hyper-parameter tuning for open-set semantic segmentation on Cityscapes. Given a fixed number of open training images,

we vary the hyper-parameter λG to train OpenGAN models. Recall that λG controls the contribution of synthesized data in the loss function.

We conduct model selection on the val-set (10 images), and report here the performance (AUROC↑) on the test set (500 images). We also

mark the λG for each of the selected models. It seems to be preferable to set a lower weight λG (for the term exploiting synthesized data

examples) when we have more real open-set data, but we do not see a tight correlation between λG and test-time performance. We believe

this is because of the (random) initialization of model weights that has a non-trivial impact on training GANs and their final performance.

#images
open
train 10 20 50 100 200 500 1000 2000 2900

OpenGANfea .761 .821 .849 .866 .891 .890 .873 .891 .885

λG 0.20 0.20 0.05 0.10 0.05 0.05 0.20 0.05 0.05

OpenGANpix .607 .632 .643 .661 .672 .705 .711 .748 .746

λG 0.60 0.40 0.80 0.90 0.70 0.60 0.60 0.60 0.70

Figure 5: Tuning hyper-parameter λG. We plot the open-set

discrimination performance (AUROC) as a function of λG, which

controls the contribution of generated data examples in the loss

function. The model we report here is OpenGANfea-1000 that

is trained with 1000 open-set training images. The validation set

and test set contain 10 and 500 images. Although the validation set

has much fewer images than the test set, the open-set classification

performances align well on the two sets.

parameter λG ∈ [0.05, 0.10, 0.15, 0.20, . . . , 0.80, 0.85,

0.90]. We mainly focus on tuning λG to study how the

synthesized data help training.

In Table 1, we show the performance on the test set of

OpenGANpix and OpenGANfea with varied open training

images. For each selected model, we mark the correspond-

ing λG that yields the best performance (on validation set).

Roughly speaking, it is preferable to set a lower weight λG

when we have more real open-set training data. However,

we do not see a clear correlation between the weight λG and

test-time performance. We believe this is due to the random

initialization which affects adversarial learning.

We also study how models trained with different λG per-

form on validation set and test set, and if the model selected

on the validation set can reliably perform well on the test-

ing set. Figure 5 plots the performance as a function of

λG on validation set and test set. Hereby we choose the

OpenGANfea model trained with 1000 open training im-

ages. We can see the performance on the validation set reli-

ably reflects the performance on the test set. This confirms

that model selection on the validation set is reliable.

Figure 6: street-shop as open-set. Figure 4 in the main paper

shows open-set pixel recognition results on a street-shop on a test-

ing image (top-row). We verify if such a street-shop appears in

the training set. We manually search for a similar street-shop in

the training set, and find the one (bottom-row) most similar to the

testing example in terms of size. Importantly, we did not find any

other street-shops in the training set that sell clothes like the test-

ing example shown in the top row. In this sense, the testing image

in the top row does contain a real open-set example (i.e., the street-

shop) in terms of not only size, but also novel content.

5. Statistical Models for Open-Set

Our previous work introduces a lightweight statistical

pipeline that repurposes off-the-shef (OTS) deep features

for open-set recognition [20]. For the completeness of

this paper, we briefly introduce this pipeline: (1) extract-

ing OTS features (with appropriate processing detailed be-

low) of closed-set training examples using the underlying

K-way classification model, (2) learning statistical models

over the OTS features. There are many statistical meth-

ods one can choose, e.g., nearest class centroids, Nearest

Neighbors, and (class-conditional) Gaussian Mixture Mod-

els (GMMs). During testing, we extract the OTS features

of the given example and resort to the learned statistical

models to compute an open-set likelihood, e.g., based on

the (inverse) closed-set probability from GMM. By thresh-



Figure 7: t-SNE plots [23] of open vs closed-set testing data, as encoded by different features from a ResNet18 network trained from

scratch on the 200-way TinyImageNet dataset. To better view the clustering results, we zoom-out with scatter plots that color the open-set

examples using their class labels provided by the respective datasets (black dots are the closed-set examples of TinyImageNet). Left:
Logit features mix open and closed data, suggesting that methods based on them (Entropy, SoftMax and OpenMax) may struggle in open-

set discrimination. Mid: Pre-logit features at the penultimate layer show better separation between closed- and open-set data. Right:
Normalizing the pre-logits features separates them better. These plots intuitively demonstrate the benefit of L2-normalization and using

OTS features ranther than the highly-invariant logits.

olding the open-set likelihood, we decide whether it is an

open-set example or one of the K closed-set classes, with

the latter we report the predicted class label.

Feature extraction. OTS features generated at different

layers of the trained K-way classification network can be

repurposed for open-set recognition. Most methods lever-

age softmax [17] and logits [3, 14, 26] which can be thought

of as features extracted at top layers. Similar to [21], we

find it crucial to analyze features from intermediate lay-

ers for open-set recognition, because logits and softmax

may be too invariant to be effective for open-set recogni-

tion (Fig. 7). One immediate challenge to extract features

from an intermediate layer is their high dimensionality, e.g.

of size 512x7x7 from ResNet18 [15]. To reduce feature

dimension, we simply (max or average) pool the feature ac-

tivations spatially into a 512-dim feature vectors [30]. We

can further reduce dimension by apploying PCA, which can

reduce dimensionality by 10× (from 512-dimensional to 50

dimensional) without sacrificing performance. We find this

dimensionality particularly important for learning second-

order covariance statistics as in GMM, described below. Fi-

nally, following [11, 13], we find it crucial to L2-normalize

extracted features (Fig. 7). We refer the reader to [20] for

quantitative results.

Statistical models. Given the above extracted features,

we use various generative statistical methods to learn the

confidence/probability that a test example belongs to the

closed-set classes. Such statistical methods include simple

parametric models such as class centroids [24] and class-

conditional Gaussian models [21, 14], non-parametric mod-

els such as NN [5, 19], and mixture models such as (class-

conditional) GMMs and k-means [6]. A statistical model

labels a test example as open-set when the inverse probabil-

ity (e.g., of the most-likely class-conditional GMM) or dis-

tance (e.g., to the closest class centroid) is above a thresh-

old. One benefit of such simple statistical models is that

they are interpretable and relatively easier to diagnose fail-

ures. For example, one failure mode is an open-set sam-

ple being misclassified as a closed-set class. This happens

when open-set data lie close to a class-centroid or Gaussian

component mean (see Fig. 7). Note that a single statistical

model may have several hyperparameters – GMM can have

multiple Gaussian components and different structures of

second-order covariance, e.g., either a single scalar, a di-

agonal matrix or a general covariance per component. We

make use of validation set to determine these hyperparame-

ters, as opposed to prior works that conduct model selection

either unrealistically on the test-set [26] or on large-scale

val-set which could be arguably used for training [21]. We

refer the reader to [20] for detailed analysis.

Lightweight Pipeline. We re-iterate that the above fea-

ture extraction and statistical models result in a lightweight

pipeline for open-set recognition. To understand this, we

analyze the number of parameters involved in the pipeline.

Assume we learn a GMM over 512x7x7 feature activations,

and specify a general covariance and five Gaussian com-

ponents. If we learn the GMM directly on the feature ac-

tivations, the number of parameters from the second-order

covariance alone is at the scale of (512 ∗ 7 ∗ 7)2. With

the help of our feature extraction (including spatial pool-



ing and PCA), we have 50-dim feature vectors, and the

number of parameters in the covariance matrices is now

at the scale of 502. This means a huge reduction (105 ×)

in space usage! We count the total number of parameters

in this GMM: 3.3× 104 32-bit float parameters including

PCA and GMM’s five components, amounting to 128KB

storage space. Moreover, given that PCA just runs once

for all classes, even when we learn such GMMs for each

of 19 classes (such as defined in Cityscapes), it merely re-

quires 594KB storage space! Compared to the modern net-

works such as HRNet (>250MB), our statistical pipeline

for open-set recognition adds a negligible (0.2%) amount of

compute, making it quite practical for implementation on

autonomy stacks.

6. Further Quantitative Results

While in the main paper we compare OpenGAN to many

methods and cannot include more due to space issues, we

list a few more in this appendix including Entropy [27],

GMM [20], CGDL [28], OpenHybrid [31], and RPL++ [7].

Except for Entropy which is a classic method, the rest were

published recently. Table 2 lists the comparisons under

Setup-I. Please refer to Section 4.2 of the main paper for

the detailed setup. Numbers are comparable to Table 1 in

the main paper. In summary, our OpenGAN outperforms

all these prior methods under this setup, achieving the state-

of-the-art.

7. Visualization of Generated Images

In this section, we visualize some synthesized examples

for intuitive demonstration.

Generating Small Images. Recall that OpenGAN-0pix

trains a normal GAN and uses its discriminator as the open-

set likelihood function. As demonstrated in the main paper,

OpenGAN-0pix performs surprisingly well under Setup-I
(i.e., using CIFAR10, MNIST and SVHN datasets) and

Setup-II (using TinyImageNet as the closed-set and other

datasets as the open-set). OpenGAN-0pix also enables us

to generate visual results for intuitive inspection. In Fig-

ure 8, we display real and synthesized “fake” images under

Setup-I on each of the three datasets. In Figure 9, we dis-

play real and fake images under Setup-II by using tinyIm-

ageNet as the closed-set and other datasets as the open-set.

We can see the generated images look realistic in terms of

color and tone. But they are not strictly open-set images

as they contain synthesized known contains (e.g., the digits

in the synthesized images are closed-set digits). This in-

tuitively demonstrates that a perfectly trained discriminator

will not be capable of discriminating open and closed-sets

due to the nature of the min-max game in training GANs.

However, from the low confidence scores of classifying the

generated fake data as closed-set shown in Figure 8, we can

see the discriminator almost naively recognizes these syn-

thesized examples as “fake” data. This shows the synthe-

sized data are insufficient to be used for model selection.

Moreover, from the classification confidence scores on the

closed-testing and open-testing images in each datasets, we

can see the discriminator is not calibrated. In other words,

we cannot naively set threshold as 0.5 for open-vs-closed

classification. This is largely hidden by AUROC metric

which is calibration-free. This implies a potential limitation

and suggests future work to calibrate the open-set discrimi-

nators.

Generating Cityscapes Patches. In the main paper

(Fig. 6), we have shown some generated patches. In the

appendix, we provide more in Figure 10. As OpenGAN-

0fea generates features instead of pixel patches, we “syn-

thesize” the patches analytically – for a generated feature,

from training pixels represented as OTS features, we find

the nearest-neighbor pixel feature (w.r.t L1 distance), and

use the RGB patch centered at that pixel as the “synthe-

sized” patch. We can see OpenGAN-0pix synthesizes re-

alistic patches w.r.t color and tone, but it (0.549 AUROC)

significantly unperforms OpenGAN-0fea (0.709 AUROC)

for open-set segmentation. The “synthesized” patches by

OpenGAN-0fea capture many open-set objects, such as

bridges, vehicle logo and back of traffic
sign, all of which are outside the 19 classes defined in

Cityscapes. This intuitively explains why OpenGAN-0fea

(0.709 AUROC) works much better than OpenGAN-0pix

(0.549 AUROC).

8. Visual Results of Open-Set Segmentation

On the task of open-set semantic segmentation, first, we

show in Figure 6 that our testing set contains real open-set

examples never-before-seen in training; please refer to the

caption for details. Then, we show more visual results in

figures from 11 through 17. From these figures, we can see

OpenGANfea captures most open-set pixels, outperforming

the other methods notably.

9. Failure Cases and Limitations

As we use an discriminator as the open-set likelihood

function, straightforwardly, failure cases happen when the

classification is not correct, as shown by the marked con-

fidence scores in Figure 8, as well as the thresholded per-

pixel predictions in figures from 11 through 17.

Hereby we point out other failure cases and limitations.

First, as we have explained in the main paper, the GAN-

discriminator will eventually become incapable of discrimi-

nating closed-set and fake/open-set images due to the nature

of GANs that strikes an equilibrium between the discrim-

inator and generator. Although we empirically show su-

perior performance by model selection on a validation set,



Table 2: Open-set discrimination (Setup-I) measured by area under ROC curve (AUROC)↑. Numbers are comparable to Table 1 in the

main paper. Recall that OpenGAN-0 does not train on outlier data (i.e., λ0=0 in Eq. 2) and only selects discriminator checkpoints on the

validation set. OpenGAN-0fea clearly performs the best, achieving the state-of-the-art.

MSP Entropy OpenMax MSPc GOpenMax OSRCI MCdrop GDM GMM C2AE CGDL RPL-WRN OpenHybrid OpenGAN-0fea

Dataset [17] [27] [3] [22] [10] [25] [9] [21] [20] [26] [28] [7] [31] (ours)

MNIST .977 .988 .981 .985 .984 .988 .984 .989 .993 .989 .994 .996 .995 .999
SVHN .886 .895 .894 .891 .896 .910 .884 .866 .914 .922 .935 .968 .947 .988
CIFAR .757 .788 .811 .808 .675 .699 .732 .752 .817 .895 .903 .901 .950 .973

there surely exists risks that the validation set is biased in

an unknown way which could catastrophically hurt the final

open-set recognition performance. This is also true even

with outlier training examples. Therefore, in the real open-

world practitioners should be aware of such a bias, and ex-

ploit prior knowledge in constructing “reliable” training and

validation sets in trainign OpenGANs. Second, as we adopt

adversarial training for OpenGANs, it is straightforward to

ask if OpenGAN is robust to adversarial perturbations on

the input images. We have not investigated this point yet,

and we leave it as future work.
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Figure 8: Demonstration of visuals along with the classification confidence scores as probabilities of being recognized as closed-set
data. On each of the three datasets, we show some random images that are closed-training image (for training GANs), synthesized “fake”

images, closed-testing images (from known classes) and open-testing images (from unknown classes). We also mark the probability for

each image of being classified as closed-set by the discriminator. We can see the synthesized images look realistic in terms of color, tone

and shape. But the discriminator can easily recognize these fake images (as indicated by the low probability). Moreover, although the

discriminator achieves good open-vs-closed classification performance measured by AUROC (which is calibration-free), the confidence

scores (probability) are not calibrated well. This implies that the discriminator may need to be calibrated for real-world application.



Figure 9: Demonstration of visuals along with the OpenGAN-0pix classification confidence scores as probabilities of being rec-
ognized as closed-set data. These visual results are generated under Setup-II, where the TinyImageNet is the closed-set for 200-way

classification, and other datasets are treated as the open-set. The discriminator of the OpenGAN-0pix is seleced over the CIFAR train-set.

(a) The discriminator recognizes the closed-set training examples with a high confidence score. (b) OpenGAN-0pix synthesizes fake im-

ages that look realistic in terms of color, tone and shape, but not content. The discriminator can easily recognize these fake images (as

indicated by the low probability). The discriminator generalizes well in terms of recognizing closed-set examples from the validation and

test sets as shown in (c) and (d), and open-set examples from other datasets as shown in (e), (f), and (h).
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Real OpenGAN-0pix OpenGAN-0fea

Figure 10: Visuals of real Cityscapes image patches (left), synthesized patches by OpenGAN-0pix (mid) and GOpenGAN-0fea

(right). As OpenGAN-0fea generates feature vectors instead of RGB patches, we “synthesize” the patches in an analytical way – for

a generated feature, we find the nearest-neighbor per-pixel feature (w.r.t L1 distance) from the training images, and then find the RGB

patch centered at the associated pixel with the per-pixel feature. The real patch is our “synthesized” patch for that generated feature. The

synthesized patches by OpenGAN-0pix do look realistic in terms of color and tone, but OpenGAN-0pix (0.549 AUROC) does not work as

well as OpenGAN-0fea (0.709 AUROC). The “synthesized” patches by OpenGAN-0fea do capture some unknown open-set objects, such

as bridge, back of traffic sign and unknown static objects, none of which belong to any of the 19 classes defined in

Cityscapes for semantic segmentation (cf. Figure 1).

Figure 11: Qualitative results of a testing image from Cityscapes. [1st row] the input image, its per-pixel semantic labels, the semantic

segmentation result by HRnet and open-set pixels colored by white. [2nd row] visual results as per-pixel scores of being classified as open-

set pixel by SoftMax, Entropy, C2AE and our OpenGAN-0fea. [3rd row] visual results by our OpenGANfea and CLS, trained with 2900

or 10 open training images, respectively. [4th row] visual results by thresholding OpenGAN-2900 with 0.6, 0.7. 0.8 and 0.9 respectively.

OpenGAN clearly captures most open-set pixels (cf. the white pixels in top-right open-set map).



Figure 12: Qualitative results of a testing image from Cityscapes. [1st row] the input image, its per-pixel semantic labels, the semantic

segmentation result by HRnet and open-set pixels colored by white. [2nd row] visual results as per-pixel scores of being classified as open-

set pixel by SoftMax, Entropy, C2AE and our OpenGAN-0fea. [3rd row] visual results by our OpenGANfea and CLS, trained with 2900

or 10 open training images, respectively. [4th row] visual results by thresholding OpenGAN-2900 with 0.6, 0.7. 0.8 and 0.9 respectively.

OpenGAN clearly captures most open-set pixels (cf. the white pixels in top-right open-set map).

Figure 13: Qualitative results of a testing image from Cityscapes. [1st row] the input image, its per-pixel semantic labels, the semantic

segmentation result by HRnet and open-set pixels colored by white. [2nd row] visual results as per-pixel scores of being classified as open-

set pixel by SoftMax, Entropy, C2AE and our OpenGAN-0fea. [3rd row] visual results by our OpenGANfea and CLS, trained with 2900

or 10 open training images, respectively. [4th row] visual results by thresholding OpenGAN-2900 with 0.6, 0.7. 0.8 and 0.9 respectively.

OpenGAN clearly captures most open-set pixels (cf. the white pixels in top-right open-set map).



Figure 14: Qualitative results of a testing image from Cityscapes. [1st row] the input image, its per-pixel semantic labels, the semantic

segmentation result by HRnet and open-set pixels colored by white. [2nd row] visual results as per-pixel scores of being classified as open-

set pixel by SoftMax, Entropy, C2AE and our OpenGAN-0fea. [3rd row] visual results by our OpenGANfea and CLS, trained with 2900

or 10 open training images, respectively. [4th row] visual results by thresholding OpenGAN-2900 with 0.6, 0.7. 0.8 and 0.9 respectively.

OpenGAN clearly captures most open-set pixels (cf. the white pixels in top-right open-set map).

Figure 15: Qualitative results of a testing image from Cityscapes. [1st row] the input image, its per-pixel semantic labels, the semantic

segmentation result by HRnet and open-set pixels colored by white. [2nd row] visual results as per-pixel scores of being classified as open-

set pixel by SoftMax, Entropy, C2AE and our OpenGAN-0fea. [3rd row] visual results by our OpenGANfea and CLS, trained with 2900

or 10 open training images, respectively. [4th row] visual results by thresholding OpenGAN-2900 with 0.6, 0.7. 0.8 and 0.9 respectively.

OpenGAN clearly captures most open-set pixels (cf. the white pixels in top-right open-set map).



Figure 16: Qualitative results of a testing image from Cityscapes. [1st row] the input image, its per-pixel semantic labels, the semantic

segmentation result by HRnet and open-set pixels colored by white. [2nd row] visual results as per-pixel scores of being classified as open-

set pixel by SoftMax, Entropy, C2AE and our OpenGAN-0fea. [3rd row] visual results by our OpenGANfea and CLS, trained with 2900

or 10 open training images, respectively. [4th row] visual results by thresholding OpenGAN-2900 with 0.6, 0.7. 0.8 and 0.9 respectively.

OpenGAN clearly captures most open-set pixels (cf. the white pixels in top-right open-set map).

Figure 17: Qualitative results of a testing image from Cityscapes. [1st row] the input image, its per-pixel semantic labels, the semantic

segmentation result by HRnet and open-set pixels colored by white. [2nd row] visual results as per-pixel scores of being classified as open-

set pixel by SoftMax, Entropy, C2AE and our OpenGAN-0fea. [3rd row] visual results by our OpenGANfea and CLS, trained with 2900

or 10 open training images, respectively. [4th row] visual results by thresholding OpenGAN-2900 with 0.6, 0.7. 0.8 and 0.9 respectively.

OpenGAN clearly captures most open-set pixels (cf. the white pixels in top-right open-set map).


