
Appendix

A. End Tasks
The descriptions of all end tasks are provided below.

Semantic Image-level, Structural Image-level, Semantic
Pixelwise, and Structural Pixelwise tasks are shown with
different colors.

• ImageNet Cls. [15] - This is a 1000 class natural image
classification task. The dataset includes a variety of cate-
gories, such as coffee mugs, drum, and fire engine. The
images are of varying resolution but they are all resized to
224⇥224.
• ImageNet v2 Cls. [50] - This is a natural image classi-
fication task with the same set of categories as ImageNet.
This task has the same train set as ImageNet, but has a re-
collected test set with the same distribution and categories.
• Pets Cls. [44] - This is a natural image classification task
with images of cats and dogs. There are a total of 37 classes
corresponding to breeds of cats and dogs including Persian,
Chihuahua and Bengal. The images are of varying resolu-
tion but they are all resized to 224⇥224.
• CalTech Cls. [35] - This is a 101 class natural image
classification task with pictures of objects such as planes,
chairs, and animals. The images are of varying resolution
but they are all resized to 224⇥224.
• CIFAR-100 Cls. [33] - This is a 100 class natural image
classification task. The classes include apples, bottles and
bicycles. The Images are of size 32⇥32 but they are all
resized to 224⇥224.
• SUN Scene Cls. [61] - This is a 397 class scenery im-
age classification task. The classes include scene categories
such as cathedral, river, or archipelago.
• EuroSAT Cls. [48] - This is a 20 class dataset of satellite
imagery classification. The spatial resolution corresponds
to 10 meters per pixel and includes categories of different
land use, such as Residential, Industrial and Highway. All
images are resized to 224⇥224.
• dtd Cls. [11] - This is a 47 class dataset of textural im-
agery classification. Some textures include bubbly, lined
and porous. All images are resized to 224⇥224.
• Kinetics Action Pred. [29] - This task consists of predict-
ing the action that a person is performing from 6 ordered
video frames. The dataset contains 400 classes including
bowling and dining. The dataset for this task is 50,000 im-
age frames captured from the Kinetics400 dataset videos at
6 frames per video. All images are resized to 224⇥224.
• CLEVR Count [28] - This is a synthetic visual question
answering dataset designed to evaluate algorithmic visual
reasoning. The task consists of classifying the number of
objects in the image. All images are resized to 224⇥224.
• THOR Num. Steps - This is a task where the maximum
number of forward steps (of 0.25 meters) that a robot in

AI2-THOR [30] can take is predicted from a frame of the
robot’s point of view. This task is structured as classifica-
tion, rather than regression, of the images from the simula-
tion and the correct answer will always be between 0 and
4 steps inclusive (thus this task is a 5-way classification).
This task is first proposed in this paper.
• nuScenes Egomotion - This is an egomotion prediction
task from two consecutive frames of the nuScenes self driv-
ing car dataset [4]. The types of motion include forward,
forward-left and forward-right motion as well as a no mo-
tion action. Both frames are resized to 224⇥224. This task
is first proposed in this paper.
• THOR Egomotion - This is an egomotion prediction task
from two consecutive frames in the AI2-THOR [30] simu-
lator. The types of motion include moving forward, left and
right rotation, and looking up and down. Frames are resized
to 224⇥224. This task is first proposed in this paper.
• Cityscapes Seg. [13] - This is a semantic segmentation
task where every pixel is labeled as one of 20 categories.
The images consist of dashboard camera views of cities and
roads. The task contains categories such as person, traffic
light and sky (there is also a background class for pixels that
do not fit into any other category). Crops of size 513⇥513
sampled from the full image are used during training, and
evaluation is done at full resolution.
• Pets Instance Seg. - This is an instance segmentation task
on the Pets dataset [44], where each image contains exactly
one cat or dog. Each image (and its ground truth instance
label) is resized to 224⇥224.
• EgoHands Seg. [3] - This is an instance segmentation
task on a dataset of video frames of human hands perform-
ing various tasks. The videos are captured using a Google
glass camera and are from the egocentric view of one person
performing a task with another person. Each frame has at
most 4 hands (the left and right hand of the person wearing
the Google glass and the right and left hand of their part-
ner) and each of these has its own associated class (there is
also a background class). Crops of size 513⇥513 sampled
from the full image are used during training, and evaluation
is done at full resolution.
• NYU Depth [40] - This is a pixelwise depth prediction
task on a dataset of natural images of building interiors ob-
tained from videos. The images are resized to 224⇥224 and
the output is predicted in meters.
• THOR Depth - This is a pixelwise depth prediction task
on a dataset of synthetic images of building interiors pro-
duced by the AI2-THOR [30] simulator. The images are
resized to 224⇥224 and the output is predicted in meters.
This task is first proposed in this paper.
• Taskonomy Depth [62] - This is a pixelwise depth predic-
tion task on a dataset of natural images of building interiors
from a variety of building types. The images are resized to
224⇥224 and the output is predicted in meters. This is a



common task but the dataset split is first proposed in this
paper.
• NYU Walkable [39] - This is a pixelwise detection task.
Each pixel is labeled as walkable (floor, carpet, etc.) or
non-walkable (wall, window, ceiling, etc). The dataset con-
sists of images of interior rooms. All images are resized to
224⇥224.
• KITTI Opt. Flow [20] - This is an optical flow prediction
task from two consecutive frames. The data comes from a
self driving dataset. Crops of size 513⇥513 sampled from
the full image are used during training, and evaluation is
done at full resolution.

The following tasks have been adopted from VTAB [63]:
Caltech Cls., CIFAR-100 Cls., dtd Cls., Pets Cls., SUN
Scene Cls., EuroSAT Cls., and CLEVR Count.

B. End Task Networks
The architecture and the loss functions used for each end

task have been shown in Table 1. Top-1 accuracy is the per-
centage of test samples labeled with the correct class, mIOU
is the class wise average intersection over union between the
prediction class mask and the ground truth, Negative L1 Er-
ror is the negative absolute distance between the prediction
and the label averaged over all the pixels, and 1-All is 1 mi-
nus the percentage of outliers averaged over all ground truth
pixels. Figures 8–12 show the details of each network. The
orange box in the figures shows the frozen encoder. The
output dimensions for each block are also shown. The vari-
ables h and w represent the height and width of the input
image, respectively, while n represents the batch size and s
represents the sequence length.

C. Training Details
In this work encoders and end task networks are trained

separately. Below we describe the training procedure for
each.

We train the encoders by MoCov2 [9] and SwAV [5] al-
gorithms. For the rest of the training algorithms, we use the
publicly released weights for the trained models. We train
every model using code publicly released by the authors and
the same hyperparameters as the original implementation.

We train the end task networks by freezing the encoders
and training just the end task network layers. For each task,
we perform a grid search of 4 sets of optimizers and learn-
ing rates using the encoder trained with SwAV on ImageNet
for 200 epochs. We then select the best performing set of
hyperparameters and use them for all other runs. We also
use the grid search training runs to determine the number of
epochs necessary for each task to converge. We performed
grid search for each individual encoder on a subset of all
the tasks and found that the hyperparameters we found were
the same across all encoders for almost all tasks (and where

they were not the same, the performance difference was so
small it could be attributed to noise), so due to computa-
tion constrains we decided to not perform a full grid search
for every task and every model. In Table 2 we report the
specific hyperparameters used for each end task.

D. Correlation Analysis of the End Tasks
To better understand the relationships between the end

tasks chosen for this paper, we analyze the correlation be-
tween their performances using different encoders. Specif-
ically, for every task A and every task B we compute the
correlation between the performance of task A and B of all
of the encoders we analyze. This shows whether good per-
formance on one task is indicative of good performance on
another.

Figures 13 and 14 show the Pearson and Spearman
(rank) correlations between the end task performance of the
encoders. One clear trend is that we see pockets of strong
correlation within each task category. Sometimes they are
well defined (Semantic Image-level or Structural Pixelwise
tasks represented by red and yellow boxes in Figure 14) and
sometimes they are more subtle (Semantic Pixelwise repre-
sented by the green box in Figure 14). Another trend that
these figures show is that ImageNet classification perfor-
mance is not a good universal metric for encoder perfor-
mance (especially for pixelwise output tasks, where there is
a low correlation).

E. CKA Analysis Details
Centered Kernel Alignment [31] is a method of quantify-

ing the similarity of representations between images as they
are processed through an encoder. For this study we com-
pare how the relationship between the representations of
two images change across the different blocks of the ResNet
encoder. We select a balanced subset of 10,000 images from
the ImageNet dataset to measure the similarity of represen-
tations, and downscale the images to 112⇥112 before pro-
cessing them through the encoder. We then compute the
CKA between the representations of every pair of images
in our subset for every block of the ResNet encoder (this
similarity metric has a range of 0 to 1). We find that all en-
coders trained with the MoCov2 algorithm have an average
increase of 0.18 of the average correlation between the lay-
ers versus the encoders trained with the SwAV algorithm.
This indicates that the MoCov2 encoders retain more spatial
information about the images in the later layers and offers
a potential hypothesis as to why MoCov2 encoders tend to
outperform SwAV encoders at pixelwise output tasks.

It is important to note that this analysis was performed
using only a subsample of ImageNet data. ImageNet was
chosen for this analysis as it is amongst the most diverse
datasets utilized in this paper, but it makes this analysis far



from entirely comprehensive. The reason for running this
analysis on just this subsample was computational complex-
ity, as evaluating the CKA on all the data available to us is
computationally impractical.

F. ANOVA Tests
For this test, we consider encoders trained with the Mo-

Cov2 and SwAV algorithms on subsets of ImageNet (as
discussed in the main text). We examine the relationship
between encoders trained on class unbalanced versions of
ImageNet and their balanced counterparts with an equiva-
lent number of samples. We use the end task results of the
following encoders in our analysis: SwAV Half ImageNet
200, SwAV Linear Unbalanced ImageNet 200, SwAV Quar-
ter ImageNet 200, SwAV Log Unbalanced ImageNet 200,
MoCov2 Half ImageNet 200, MoCov2 Linear Unbalanced
ImageNet 200, MoCov2 Quarter ImageNet 200, MoCov2
Log Unbalanced ImageNet 200.

Our analysis found evidence that an encoder trained on
a Log Unbalanced subset of ImageNet outperforms an en-
coder trained on a balanced subset of ImageNet with an
equivalent number of samples. To further validate this con-
clusion we trained 2 additional encoders using SwAV on
2 different logarithmically unbalanced subsets of ImageNet
and included them in the following test.

We fit an ANOVA model to all of the results we obtain,
treating the task, training algorithm, dataset balance, dataset
size and number of training steps as variables. We find that
(unsurprisingly) the task, dataset size and number of train-
ing steps are statistically significant indicators of end task
performance. We also find that the algorithm used to train
the encoder (MoCov2 vs SwAV) is a statistically signifi-
cant indicator of end task performance, with SwAV models
performing better (this does not contradict our claim that
SwAV is not universally better than MoCov2, as we simply
have more tasks that SwAV is good at in our test battery).
Finally, we do not find any statistically significant evidence
that an encoder trained with the balanced ImageNet is better
than the encoders trained on the discussed unbalanced vari-
ations. We do however find evidence that an encoder trained
on a Log unbalanced subset of ImageNet tends to perform
better than one trained on a balanced subset. Perhaps the
(comparatively) larger number of samples of the same few
categories is a good match for the contrastive learning algo-
rithm, but further experiments are needed to determine the
exact cause and extent of this phenomenon.

G. Variance of the Results
The main source of variance in our results is the self-

supervised training of the encoder. Since each encoder re-
quires over 500 GPU hours to be trained for 200 epochs
with the MoCov2 training algorithm, and over 1000 GPU

hours to be trained for 200 epochs with the SwAV training
algorithm, it is impractical for us to test multiple training
runs of every encoder configuration that we study in this
work.

To provide some context regarding the magnitude of
variations across runs, we train three encoders using SwAV
on ImageNet for 200 epoch with different random seeds.
All training parameters are exactly the same as those used
by the SwAV authors to obtain their SwAV 200 model.

Our results show that, on average, the variation in the
performance of the end tasks is less than 0.85% (relative dif-
ference with the average performance), which can be negli-
gible.

H. List of Encoders
Table 3 provides a complete list of all 30 encoders that

are used for our analysis.

I. Effects of MultiCrop Pre-processing
This work draws some comparisons between the Mo-

Cov2 and SwAV training pipelines and identifies some
trends in the performance of encoders trained with them.

The two pipelines do not just contain a different train-
ing algorithm, but they also employ different pre-processing
methods. To understand if the observed differences in
end task performance are simply a result of different pre-
processing we conduct an ablation study where we use the
improved pre-processing methods of SwAV in conjunction
with the MoCov2 training pipeline to train an encoder on
ImageNet and evaluate its performance on our battery of
end tasks.

We observe that the MultiCrop pre-procesing employed
by SwAV is only partially responsible for the observed gap
between the two training pipelines in question. Further-
more we observe that the MuliCrop pre-processing is not
a universally better choice, as it seems to degrade the per-
formance of certain Pixelwise output tasks. This result is
rather expected since the MultiCrop pre-processing essen-
tially makes the model embed a patch of the image and the
entire image very similarly, thus encouraging more seman-
tic and less structural embeddings.

Figure 15 shows that for almost all tasks the perfor-
mance of the MoCov2+MultiCrop model is between that
of the SwAV model and the vanilla MoCov2. From this we
can hypothesize that adding MultiCrop makes the MoCov2
model behave more like model trained with SwAV when
embedding images.

J. Other Encoders
One obvious axis of expansion for future work is per-

forming this analysis on more encoders trained with differ-
ent pipelines. We chose a very small subset from the cur-



rent state of the field and analyzed them very comprehen-
sively. This meant that we would necessarily have to omit
some prominent pipelines from our study. We conducted
small ablations with 2 such noteworthy omissions: Sim-
Siam [10], a siamese-style self supervised algorithm and
Exemplar-v2 [66], an improved supervised training method.

Figure 16 shows that SimSiam performs very similarly to
SwAV on our battery of end tasks. The distributions of the
normalized end task scores of SwAV and SimSiam encoders
show that SimSiam does not appear to be better and thus
our analysis did not miss covering an encoder that would
significantly outperform the rest.

We can also see that Exemplar-v2 does in fact outper-
form the vanilla supervised baseline on most end tasks,
but it falls far short of the performance of certain self-
supervised models like SwAV. This suggests that our find-
ings regarding the performance of supervised vs. self super-
vised pipelines still hold.



Task Category End Task Network Loss Success Metric
• ImageNet Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• ImageNet v2 Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• Pets Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• CalTech Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• CIFAR-100 Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• SUN Scene Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• Eurosat Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• dtd Cls. Semantic Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• Kinetics Action Pred. Semantic Image-level Multi Input Fusion Classifier Cross Entropy Top-1 Accuracy
• CLEVR Count Structural Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• THOR Num. Steps Structural Image-level Single Layer Classifier Cross Entropy Top-1 Accuracy
• THOR Egomotion Structural Image-level Multi Input Fusion Classifier Cross Entropy Top-1 Accuracy
• nuScenes Egomotion Structural Image-level Multi Input Fusion Classifier Cross Entropy Top-1 Accuracy
• Cityscapes Seg. Semantic Pixelwise DeepLabv3+ Pixelwise Cross Entropy mIOU
• Pets Instance Seg. Semantic Pixelwise DeepLabv3+ Pixelwise Cross Entropy mIOU
• EgoHands Seg. Semantic Pixelwise DeepLabv3+ Pixelwise Cross Entropy mIOU
• THOR Depth Structural Pixelwise U-Net L1 Error Negative L1 Error
• Taskonomy Depth Structural Pixelwise U-Net L1 Error Negative L1 Error
• NYU Depth Structural Pixelwise U-Net L1 Error Negative L1 Error
• NYU Walkable Structural Pixelwise DeepLabv3+ Pixelwise Cross Entropy mIOU
• KITTI Opt. Flow Structural Pixelwise Siamese U-Net. L1 Error 1 - All

Table 1. The network architecture, the loss and the success metric for each end task.
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Figure 8. The Single Layer Classifier end task architecture. The orange box shows the frozen encoder.
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Figure 9. The Multi Input Fusion Classifier end task architecture. The orange box shows the frozen encoder.
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Figure 10. The U-Net end task architecture. The orange box shows the frozen encoder.

UpVample 2 UpVample 3 UpVample 4

UpVample 1

n [ 1024 [ h/16 [ Z/16 n [ 512 [ h/8 [ Z/8
n [ 256 [ h/4 [ Z/4 n [ 64 [ h/2 [ Z/2

ClaVV
PUedicWion

SiameVe U-NeW

Block 1 Block 2 Block 3 Block 4ConY

ReVNeW 50

n [ 64 [ h/2 [ Z/2 n [ 256 [ h/4 [ Z/4
n [ 512 [ h/8 [ Z/8

n [ 1024 [ h/16 [ Z/16
n [ 2048 [ h/32 [ Z/32

Block 1 Block 2 Block 3 Block 4ConY

ReVNeW 50
n [ 64 [ h/2 [ Z/2 n [ 256 [ h/4 [ Z/4

n [ 512 [ h/8 [ Z/8
n [ 1024 [ h/16 [ Z/16

n [ 2048 [ h/32 [ Z/32

n [ c [ h [ Z

FXVion
La\eU

FXVion
La\eU

FXVion
La\eU

FXVion
La\eU

FXVion
La\eU

Figure 11. The Siamese U-Net end task architecture. The orange box shows the frozen encoder.
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Figure 12. The DeepLabV3+ end task architecture. The orange box shows the frozen encoder.

Task Train Set Size Number of Train Epochs Optimizer Learning Rate
• ImageNet Cls. 1,281,167 100 Adam 0.0003
• Pets Cls. 3,680 500 Adam 0.0003
• CalTech Cls. 3,060 5000 Adam 0.0003
• CIFAR-100 Cls. 50,000 100 Adam 0.0003
• SUN Scene Cls. 87,003 250 Adam 0.0003
• Eurosat Cls. 21,600 200 Adam 0.0003
• dtd Cls. 3,760 100 Adam 0.0003
• Kinetics Action Pred. 50,000 100 Adam 0.0003
• CLEVR Count 70,000 100 Adam 0.0003
• THOR Num. Steps 60,000 100 Adam 0.0003
• THOR Egomotion 60,000 100 Adam 0.0003
• nuScenes Egomotion 28,000 100 Adam 0.0003
• Cityscapes Seg. 3,475 100 Adam 0.0003
• Pets Instance Seg. 3,680 100 Adam 0.0003
• EgoHands Seg. 4,800 25 Adam 0.0003
• THOR Depth 60,000 50 Adam 0.0003
• Taskonomy Depth 39,995 50 Adam 0.0003
• NYU Depth 1,159 250 Adam 0.0003
• NYU Walkable 1,159 100 Adam 0.0003
• KITTI Opt. Flow 200 250 Adam 0.0003

Table 2. Training details for each end task.



Figure 13. Pearson Correlation between the scores of all end tasks obtained using every encoder we study in this paper. Within category
correlations for Semantic Image-level, Structural Image-level, Structural Pixelwise, and Semantic Pixelwise tasks are highlighted by red,
blue, yellow and green boxes, respectively.



Figure 14. Spearman Correlation between the scores of all end tasks obtained using every encoder we study in this paper. Within category
correlations for Semantic Image-level, Structural Image-level, Structural Pixelwise, and Semantic Pixelwise tasks are highlighted by red,
blue, yellow and green boxes, respectively.



Encoder Name Method Dataset Dataset Size Number of Epochs Trained by us
SwAV ImageNet 800 SwAV ImageNet 1.3M 800 No
SwAV ImageNet 200 SwAV ImageNet 1.3M 200 No
SwAV ImageNet 100 SwAV ImageNet 1.3M 100 Yes
SwAV ImageNet 50 SwAV ImageNet 1.3M 50 Yes
SwAV Half ImageNet 200 SwAV ImageNet-1⁄2 0.5M 200 Yes
SwAV Half ImageNet 100 SwAV ImageNet-1⁄2 0.5M 100 Yes
SwAV Quarter ImageNet 200 SwAV ImageNet-1⁄4 0.25M 200 Yes
SwAV Linear Unbalanced ImageNet 200 SwAV ImageNet-1⁄2-Lin 0.5M 200 Yes
SwAV Linear Unbalanced ImageNet 100 SwAV ImageNet-1⁄2-Lin 0.5M 100 Yes
SwAV Log Unbalanced ImageNet 200 SwAV ImageNet-1⁄4-Log 0.25M 200 Yes
SwAV Places 200 SwAV Places 1.3M 200 Yes
SwAV Kinetics 200 SwAV Kinetics 1.3M 200 Yes
SwAV Taskonomy 200 SwAV Taskonomy 1.3M 200 Yes
SwAV Combination 200 SwAV Combination 1.3M 200 Yes
MoCov2 ImageNet 800 MoCov2 ImageNet 1.3M 800 No
MoCov2 ImageNet 200 MoCov2 ImageNet 1.3M 200 No
MoCov2 ImageNet 100 MoCov2 ImageNet 1.3M 100 Yes
MoCov2 ImageNet 50 MoCov2 ImageNet 1.3M 50 Yes
MoCov2 Half ImageNet 200 MoCov2 ImageNet-1⁄2 0.5M 200 Yes
MoCov2 Half ImageNet 100 MoCov2 ImageNet-1⁄2 0.5M 100 Yes
MoCov2 Quarter ImageNet 200 MoCov2 ImageNet-1⁄4 0.25M 200 Yes
MoCov2 Linear Unbalanced ImageNet 200 MoCov2 ImageNet-1⁄2-Lin 0.5M 200 Yes
MoCov2 Linear Unbalanced ImageNet 100 MoCov2 ImageNet-1⁄2-Lin 0.5M 100 Yes
MoCov2 Log Unbalanced ImageNet 200 MoCov2 ImageNet-1⁄4-Log 0.25M 200 Yes
MoCov2 Places 200 MoCov2 Places 1.3M 200 Yes
MoCov2 Kinetics 200 MoCov2 Kinetics 1.3M 200 Yes
MoCov2 Taskonomy 200 MoCov2 Taskonomy 1.3M 200 Yes
MoCov2 Combination 200 MoCov2 Combination 1.3M 200 Yes
MoCov1 ImageNet 200 MoCov1 ImageNet 1.3M 200 No
PIRL ImageNet 800 PIRL ImageNet 1.3M 800 No

Table 3. The complete list of all 30 encoders used for the study.



Figure 15. End Task performance of encoders trained on ImageNet using MoCov2, SwAV and MoCov2 with the MultiCrop pre-processing
step from the SwAV paper. Different end tasks have different measures of performance but a higher number always indicates better
performance. The bars represent the performance of different encoders and are sorted from least to most performant on each end task.



Figure 16. Distribution of normalized performances for the SwAV, SimSiam and Exemplar-v2 encoders trained on ImageNet for 200
epochs. The performances are normalized by first subtracting the performance of the vanilla supervised ImageNet encoder and then
dividing by the standard deviation of all the performances for the task. Positive values show superior performance to the vanilla supervised
ImageNet encoder, and the negative values show otherwise. A larger width means more performance values fall in that range. The plot
shows that SimSiam tends to perform similarly to SwAV. Furthermore the plot shows that Exemplar-v2 performs better than the vanilla
baseline, but worse than both SwAV and SimSiam, reinforcing our claims about the outperformance of self-supervised models.


