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In the supplement in Section A we provide additional ab-
lation experiments on the second and the third phase, further
in Section B we expand implementation details by specifying
the applied data augmentation, generalized and incremental
few-shot learning setups, and the splits used for UCF101
dataset. Finally, Section C contains extended tables for all
the datasets.

A. Additional ablation of the phases

In this section we discuss possible variations of our pro-
posed framework and their influence on the performance.
Specifically, we discuss the necessity of the second phase
and the duration of the second phase. We also inspect the in-
fluence of knowledge preservation on the performance after
the third phase and the impact of weight decay regulariza-
tion.

A.l. The second phase

Skip the second phase In the proposed work, we address
the problem of generalized few-shot learning with a
three-phase framework. During the second phase we target
to improve novel class learning and to mitigate catastrophic
forgetting of the base classes. In Fig. 1 we show the
development of the performance when we skip the second
phase and directly proceed with the third phase. During
the third, joint calibration phase, the training set consists of
base (one sample per class) and all novel training samples.
The performance of the base classes in the joint space B
and the separate space Bp stays at high level even with few
training samples. While the separate novel Ny performance
can reach high values during the third phase, novel class
learning in the joint space suffers from strong bias towards
base classes (red curve on the figure stays low). It shows
that our second phase for explicit novel learning in the joint
space gives a significant boost to the overall performance in
the joint space.
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Figure 1: We skip the second phase in our three-phase framework
and sequentially apply the first and the third phase instead. The
red curve (N ;) shows that the performance of the model on novel
samples in the joint space stays low and is not able to achieve high
accuracy in the joint space without the second phase.

Skip the second phase and keep batch ratio during the
third phase We further evaluate the performance of the
model without the second phase but with the third phase
adaptation. Specifically, we ensure consistent batch-wise
ratio between novel and base classes during the third phase.
In Table 1 the results show not only better performance than
trivially skipping the second phase but also outperform the
previous state-of-the-art [11]. Our proposed three-phase
framework performs better on the novel classes.

batch size  per batchratio N, ; B, him
#N+#B  N/B  (5/e9) (64/9) =7
541 83/17 5239 5728 54.72
542 71/29 51.51 59.59 55.26
5+3 63/37 48.11 63.52 54.75
ANN [11] - 45.61 6392 5324
LCwoF 3 phases 53.28 6324 57.83

Table 1: 5wls mini-ImageNet. No 3" phase, controlled batch
ratio.

Interleave the second and the third phases In order to
shed light onto the question if one should separate the sec-



ond and the third phases as proposed, in Table 2, we instead
interleave the second and the third phases. Particularly, we
alternate training on novel classes only (for X epochs) and
balanced replay (for 1 epoch). We use X = 10,20, 30.
Phase alternation shows to be an effective alternative com-
pared to the consecutive execution that still performs best.

epochs per period
X (novel) + 1(replay) N/B

period ratio N ; By
(5/69) (64/69)

hm/J

10+1 46/54 43.08 70.06 53.35
2041 62/38 49.20 6540 56.15
30+1 71/29 51.37 6420 57.07
LCwoF 3 phases  53.28 63.24  57.83

Table 2: 5w1s mini-ImageNet. Interleave of the 2" and the 3"
phases.

A.2. Number of epochs of the second phase

For the evaluation, we train the model for a fixed num-
ber of epochs during the second phase for all the datasets
and setups. Fig. 2 shows similar behaviour when we apply
smaller (30) number of epochs during the second phase and
compare it to a longer second phase (150 epochs). Due to
the negligible differences we use the initially chosen value
that equals 150 epochs throughout the main paper.
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Figure 2: Different duration of the second phase. The behaviour
and the quantitative performance is the same. Left: we use 150
epochs for the second phase; right: we use 30 epochs for the second
phase.

A.3. High ) for the weight constraints

In the main paper in Fig.4 we show the range of appro-
priate A to achieve good balanced performance for Swls
and 5w5s setups. We claim that A should not prevent novel
class learning while preserving base performance in the base
class space. In Fig.4 we exclude too low )\ since empirically
we found decrease in the performance on the base classes
after the third phase. Table 3 presents the performance of
the model with different A after the third phase. Higher A
helps to better preserve knowledge of the base classes while
it hinders novel class learning in the joint space.

A.4. Impact of weight decay regularization

While we apply constraints on the parameters of the
model by applying LY, the question arises if and to which

Swls

X | Ny By
le+l | 53.27 60.03 56.45
le+2 | 53.37 61.45 57.13
Se+2 | 53.28 63.24 57.83
S5e+3 | 52.65 63.48 57.56

hm/(]

Table 3: Performance of the model after the third phase . A stands
for the importance weight of the LY © term. Higher A, higher
knowledge preservation, higher accuracy B, ;. Performance of the
model after the second phase for the corresponding A can be found
in Fig.4 in the main paper. Results on mini-ImageNet.

extend we would need standard weight decay as regulariza-
tion on the model parameters. As shown in Fig. 3, while
the contribution of the regularization term remains minor, it
neither helps the performance nor harms.
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Figure 3: Contribution of weight decay regularization and influ-
ence on the performance of the framework in term of N, ;, B, ;

and hm, ;. Results on mini-ImageNet, S5wls, averaged over 100
episodes.

A.5.10w1s and 20wls

We evaluate our approach for additional setups to directly
compare to knowledge preservation methods, similarly as in
Table 6 in the main paper. Table 4 confirms our finding that
with little amount of data knowledge distillation (KD) [4, 10]
performs worse than with LY'¢ constraints.

10wls 20wls

N,y B, Ny;y B,

method (10/74) (64/74) (20/84) (64/s4)

hm/J hm/J

Lye 40.84 5831 47.75 | 29.76  56.68 38.87
KD 37.81 5822 4553 | 27.06 5775 36.85

Table 4: Comparison of knowledge preservation techniques on
mini-ImageNet for setups 10w1s and 20w1s, with 10 and 20 novel
classes correspondingly.

B. Extended implementation details

This section covers additional details of the implementa-
tion. We first specify the exact augmentation for images and



then discuss the evaluation for the generalized and incremen-
tal setups. Our framework is built with PyTorch library and
will be made publicly available.

Augmentation For training on images we apply standard
augmentation with random resizing followed by random
cropping to the size 84x84 and random horizontal flip. We
also use color jittering that allows to randomly change bright-
ness, contrast, and saturation. For the test we first resize an
image to the size of 92x92 and then apply a central 84x84
crop.

Evaluation For each image and video dataset for testing we
use 15 samples per class for both base and novel classes. We
train two parametric classifiers for base and novel classes
respectively, to evaluate the performance in the joint space
we concatenate the logit vectors (dimensionalilty C'p and
Cy for base and novel classes accordingly) and predict the
class by applying argmax operator over the concatenated
output vector of dimensionality Cp + Cy.

lim & unlim For each dataset we conduct experiments with

the two following setups: lim denotes limited access to the
base training data during the third phase, whereas for unlim
we allow the model to have unlimited access to the base
training samples during the third phase. During the third
phase we target to have balanced training set, thus the replay
set consists of all |Cy| - K novel samples and |Cp| - K base
samples. K refers to the number of samples for each novel
class, the notation corresponds the standard notation for few-
shot learning [, 3, 6], e.g. Swls denotes 5 novel classes
with 1 training sample per class, thus K = 1. lim: for each
episode we draw at random the replay set only once before
the third phase and reuse that replay set for each epoch for
that episode. unlim: for each episode we draw random base
training samples for the replay set before each epoch anew.

B.1. Generalized few-shot learning setup

Episodic training is a common way to evaluate few-shot
learning methods, further we detail the difference from the
standard training protocol [3, 11, 18]. As before C'p stands
for base classes. Generally, the few-shot setup is formu-
lated in a V-way K -shot notation (C'y from the main paper
equals to N in this formulation), specifically each few-shot
episode consists of C'y novel classes with K training sam-
ples per class. In the generalized setup each episode includes
C'p base classes for the classification along with C'y novel
classes. Each dataset includes 7" classes in the novel test
set, usually |T'| > |Cx|, e.g. in mini-ImageNet there are
T = 24 classes in the test set whereas we evaluate on Swls
and 5w5s (for both cases C'y = 5). To this end, following
standard practice [3, |1, 18] we evaluate the performance
as average over 600 episodes such that for each episode we
repeat:

1) randomly draw C' novel classes from 7'

2) randomly draw K training samples per each class
3) apply training framework to the current training data

4) randomly draw 15 samples per class to test the frame-
work

5) reset the framework to initial state and clean train data
B.2. Incremental few-shot learning setup

We refer to recent work [2, 8] for an extensive overview
and taxonomy on incremental (continual) learning. In our
work we aim at class-incremental learning where all seen
classes should be classified in the joint space. Whilst another
popular choice of continual learning is task-incremental
learning with an objective to achieve high accuracy in the
disjoint spaces, in our notation we could refer to this setup
as having high B, g base performance and high N, novel
performance separately. Such formulation of the task is eas-
ier than to achieve a joint balanced, high performance. The
usual way to evaluate class incremental learning [7, 15, 1]
is to continuously measure performance of the model in the
growing joint space. The first task (sometimes called session)
is to evaluate performance on the base classes C'p. Follow-
ing few-shot N-way (C'y) K -shot notation, the second task
increases the joint space by |Cy| classes, the third task in-
creases again by |Cn| classes resulting in |Cp| + 2|Cy]|
classes and so on up to 9 tasks in mini-ImageNet, namely
|Cp| + 8|Cn| classes. We follow [15, 1] and use the same
division into the tasks, training and test samples.

B.3. UCF101 splits

As mentioned in the main paper in Section 4, for UCF101
we have introduced a novel split. We observe that the B, 5
performance achieves almost 99 points with the previously
introduced split by Dwivedi [6] that we report in Table 8.
We do not change the division into base and novel classes
but instead we filter out some videos that share the same
group [14] from train and test splits. When comparing the
results of B,p from the previous split and our novel split
we indeed see a drop in the performance indicating that the
proposed split corresponds to a harder task. Subsequently,
the performance Ny, B,; and N, ; also drops. We will
make the novel split publicly available.

C. Extended tables

In Table 5 we summarize Tables 9, 10 and 11 by re-
porting performance with different metrics after all 9 tasks
for incremental few-shot learning. In the supplement we
account base biased and balanced hm performance for our
framework. base biased stands for the performance of the
model that shows higher accuracy on base classes, whereas
balanced hm indicates more balanced performance between
the disjoint sets that we control by number of epochs for the



third phase. The discrepancy is caused by the difference in
the number of base and novel classes (|C| > |Cn|) and
the initial bias of the network towards base classes due to
larger number of training samples and further knowledge
preservation. Therefore, in Table 5 .J, ; performance mainly
depends on the performance of the base classes B/ 5, e.g. for
Joint training method B, ; and J, ; show the highest 61.89
points and 43.38 points respectively among all other meth-
ods. All other methods that achieve high B, ; performance
(60.44 for IDLVQ, 59.64 for IW) accordingly reach high
performance on the joint set of base and novel classes J, s
(41.84 for IDLVQ, 41.26 for IW). At the same time these
methods perform poorly on the novel samples that corre-
sponds to N, ; column in Table 5 (15.62 for Joint, 13.94 for
IDLVQ, 13.69 for IW). On the contrary, in our framework
we explicitly address novel class learning in the joint N, 5
space via base-normalized cross entropy and, thus, we are
able to surpass all the previous methods on novel classes by
more than 10 points, we reach 27.65 points. Our base biased
model outperforms previous state-of-the-art models by large
margin on novel classes N /75 harmonic mean hm /75 and
sets a new benchmark for the joint classes J, ;. By balanced
hm we show that better balance can be achieved in terms of
N,y and hm 7, while B, ; and accordingly .J, ; decreases.

Tables 6, 7, and 8 are extension of Tables 2, 3, and 4 from
the main paper respectively. For all the datasets we report
additionally N,n, B/, and am, ;.

mini-ImageNet

method ‘ B/J N/J J/J hm/J

FT® 146 136 142 140

Joint® 61.89 15.62 43.38 2495

iCaRL [10]° 2447 7770 1776 11.71

UCIR [5]° 21.57 827 1625 11.96

PN [13]° 56.47 1135 3842 18.90

ILVQ [17]° 56.49 11.34 3843 18.89

SDC [19]° 59.87 13.30 41.24 21.77

W [97° 59.64 13.69 41.26 2227

IDLVQ [1] 60.44 1394 4184 22.65
TOPIC [15] - - 24.42 -

LCwoF (base biased) | 55.98 23.12 42.84 32.73

LCwoF (balanced hm) | 47.73 27.65 39.70 35.02

Table 5: IFSL. Comparison to state-of-the-art on mini-ImageNet
using metrics By, N, y, J; 5, hm,; and am ; after the last (9)
task. © indicates results copied from IDLVQ [1].
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tiered-ImageNet Swls

tiered-ImageNet Sw5s

Ny Bys Nyg By, Ny Bys Nyy By,

method (575) (200/200) | (5/o05) (20/505) | T PN (5,00 (200)900) | (5205) (200505 | I A
PN [13]F . - - - T 30.04 . - - N T 4138
IW [9](1) 60.88 70.19 44.95 62.53 52.30 53.74 || 79.26 70.25 71.85 56.11 63.01 63.98
DFSL [3] (¢) 59.52 47.53 47.32 36.10 4096 41.71 || 75.89 47.98 67.94 39.08 49.61 53.51
AAN [11](c) 61.37 62.44 54.39 55.85 55.11 55.12 || 7791 62.36 72.09 57.76 64.13 64.93
AAN [11](orig) - - - - - 56.11 - - - - - 65.52
LCwoF (ours) lim | 64.71 70.55 57.13 60.39 58.71 58.76 || 79.72 70.58 69.05 63.44 66.12 66.25
LCwoF (ours) unlim | 64.67 70.59 57.54 60.09 58.78 58.82 || 80.02 70.59 70.20 63.01 66.41 66.61

Table 6: Comparison to state-of-the-art on tiered-ImageNet Swls (left) and Sw5s (right) with ResNet backbone. /im denotes limited access
to base train samples during the third phase, for unlim we do not apply such restrictions. ° indicates results copied from RGFSL [
indicates results from AAN [11], (c) denotes that we run available code on the corresponding data, (i) states for our re-implementation of the
respective method, (orig) indicates original numbers from the respective paper.

]’*

mini-Kinetics Swls

mini-Kinetics 5Sw5s

Ny Bys | Ny By Ny Bys | Ny By
method Grs) (64760 | (5o0) 64s00) | ™7 | (55) (6460) | Bre) (6dveg) | VI VT
IW [9](1) 62.57 58.42 45.56 48.56 47.01 47.06 || 74.61 56.67 56.92 49.17 52.76  53.05
DFSL [3] (¢) 65.35 56.04 | 50.81 4451 4745 47.66 || 81.11 56.46 | 70.29 46.31 55.83 58.30
GFSV [16] - - 13.70 88.70 2373 51.20 - - 2230 88.70 35.64 55.50
AAN [11](c) 59.36 57.99 46.13 35.96 40.41 41.05 || 76.83 59.49 56.99 43.21 49.15 46.18
LCwoF (ours) lim 5597 64.84 | 47.51 50.84 49.12 49.18 || 7476 65.06 | 63.65 54.55 58.75 59.10
LCwoF (ours) unlim | 55.39  65.01 46.26 51.94 48.93 49.10 || 73.77 65.18 65.40 5270 | 58.37 59.05

Table 7: Comparison to state-of-the-art on mini-Kinetics Swls (left) and Sw5s (right) with 2-layers MLP backbone. /im denotes limited
access to base train samples during the third phase, for unlim we do not apply such restrictions. (c) denotes that we run available code on the

corresponding data, (i) states for our re-implementation of the respective method.

UCF101 50w1s

N/n B/p N,y By
method (50/50) (51y50) | (50/101) (o) | 7 O
ProtoG [6] - - 52.30 75.30 61.73 63.80
LCwoF (ours) 57.13 98.97 54.41 91.41 68.22 72091
IW [9] 54.08 85.59 45.22 76.15 56.73  60.69
LCwoF (ours) lim 55.98 84.16 50.78 70.72 59.11 60.75
LCwoF (ours) unlim | 54.35 82.33 49.12 69.98 57.72 59.55

Table 8: Comparison to state-of-the-art on UCF101 50w1s with 2 layers MLP backbone on pre-extracted features. (i) states for our
re-implementation of the respective method. /im denotes limited access to base train samples during the third phase, for unlim we do not

apply such restrictions. Top: splits from ProtoG [6]; bottom: original UCF101 train/test splits as in [

1.



mini-ImageNet

method 1 2 3 4 5 6 7 8 9
hm s 60 +5 +10 +15 420 +25 +30 +35 +40
FT® - 723 739 487 240 206 1.84 157 140
Joint® - 892 17.02 21.86 20.54 2292 2285 2441 2495
iCaRL [10]° - 845 1386 1492 13.00 14.06 12.74 12.16 11.71
UCIR [5]° - 9.62 1414 1558 13.19 13.63 13.11 1276 11.96
PN [13]° - 976 1472 16.78 19.09 20.06 1937 18.98 18.90
ILVQ [17]° - 9.66 16.08 17.78 20.05 20.35 19.64 19.06 18.89
SDC [19]° - 2051 1879 1736 2047 19.21 1827 20.79 21.77
IW [9]° - 2532 2045 22.62 2548 2254 20.66 2127 22.27
IDLVQ [1] - 21.69 2044 2198 25.19 2299 20.82 21.56 22.65
LCwoF (base biased) | - 25.56 30.59 27.29 28.08 2991 27.97 30.30 32.73
LCwoF (balanced hm) | - 41.24 38.96 39.08 38.67 36.75 35.47 34.71 35.02

Table 9: IFSL. Comparison to state-of-the-art on mini-ImageNet based on harmonic mean metric between base and novel classes. © indicates
results copied from IDLVQ [1].

mini-ImageNet

B, ; (60) 1 2 3 4 5 6 7 8 9
FT° 6425 3228 2087 695 3.17 3.16 192 153 146
Joint® 6425 63.30 62.83 62.16 62.18 62.68 61.86 61.87 61.89
iCaRL [10]° 6425 51.66 4397 4562 3739 30.86 28.68 26.83 24.47
UCIR [5]° 6425 5287 50.16 44.78 37.48 28.75 2558 2297 2157
PN [13]° 6425 59.27 58.88 5869 5822 57.63 57.03 56.80 56.47
ILVQ[I17]° 6425 6024 59.62 59.02 5861 57.71 57.16 56.83 56.49
SDC [19]° 64.62 6358 6278 61.12 6029 5937 59.05 59.97 59.87
W [9]° 6471 63.52 6296 62.13 61.17 6127 60.63 59.86 59.64
IDLVQ[1] 6477 63.77 6322 6244 6122 6147 60.97 60.66 60.44
LCwoF (base biased) | 6445 63.53 62.07 61.55 60.85 59.26 5825 57.23 55.98
LCwoF (balanced hm) | 64.45 57.33 53.31 52.87 51.38 4825 47.60 4751 47.73
N/, 1 2 3 4 5 6 7 8 9

#cl - 5 10 15 20 25 30 35 40

FT° - 407 449 375 193 153 177 161 136

Joint® - 480 984 1326 1230 1403 1401 1521 15.62
iCaRL [10]° - 460 809 892 787 0.0 819 786 7.0
UCIR [5]° - 529 823 943 800 893 881 883 827
PN [13]° - 532 841 979 1142 1214 1167 1139 11.35
ILVQ[17]° - 525 929 1047 1209 1235 11.86 1145 11.34
SDC [191° - 1223 1105 1012 1233 1146 1081 12.58 13.30

W [9]° - 1581 1221 1383 1609 1381 1245 1293 13.69
IDLVQ [1] - 13.07 1219 1334 1586 14.14 1255 13.11 13.94
LCwoF (base biased) | - 16.00 2030 17.53 1825 20.00 18.40 20.60 23.12
LCwoF (balancedhm) | - 32.20 30.70 31.00 31.12 29.68 28.27 27.34 27.65

Table 10: IFSL. Comparison to state-of-the-art on mini-ImageNet. Top: performance of the base samples in the joint space after each task.
Bottom: performance of the novel samples in the joint space after each novel task. © indicates results copied from IDLVQ [1].



mini-ImageNet both®

1 2 3 4 5 6 7 8 9
Jyg 60 +5 +10 +15 420 +25 430 +35 +40
FT® 64.25 30.11 1853 631 286 286 187 156 142
Joint® 64.25 58.80 5526 5238 49.71 4837 4591 44.68 43.38
iCaRL [10]° 64.25 48.04 43.13 38.28 30.01 24.46 21.85 19.84 17.76
UCIR [5]° 64.25 49.21 44.17 3771 30.11 2292 1999 1796 16.25
PN [13]° 64.25 55.12 51.67 4891 46.52 4425 4191 40.07 38.42
ILVQ [17]° 64.25 56.01 52.43 4931 4698 4437 42.06 40.11 3843
SDC [19]° 64.62 59.63 5539 50.92 4830 4528 4297 4251 41.24
W [9]° 64.71 59.85 5571 5247 4990 4731 44.57 4257 41.26
IDLVQ [1] 64.77 59.87 5593 52.62 49.88 4755 44.83 43.14 41.84
TOPIC [15] 61.31 50.09 45.17 41.16 37.48 3552 32.19 2946 24.42
LCwoF (base biased) | 64.45 59.88 56.10 52.75 50.20 47.71 44.97 43.74 42.84
LCwoF (balanced hm) | 64.45 5540 50.08 48.49 46.28 4278 41.16 40.08 39.70

Table 11: IFSL. Comparison to state-of-the-art on mini-ImageNet based on joint performance of base and novel samples in the joint space. ©
indicates results copied from IDLVQ [1].



