
Supplementary for Generalize then Adapt: Source-Free Domain Adaptive
Semantic Segmentation

In this supplementary, we provide detailed theoretical
insights, extensive implementation details with additional
qualitative and quantitative performance analysis. To-
wards reproducible research, we have released our code
and trained network weights at our project page: https:
//sites.google.com/view/sfdaseg.
This supplementary is organized as follows:

• Section 1: Notations (Table 1)
• Section 2: Extended theoretical insights

– Discussion on Result 1 (Sec. 2.1)

– Augmentation selection criteria (Sec. 2.2)

• Section 3: Implementation details
– Experimental settings (Sec. 3.1, Table 7)

– Vendor-side training (Sec. 3.2, Algo. 1)

– Client-side training (Sec. 3.3, Algo. 2)

– Optimization details (Sec. 3.4)
• Section 4: Analysis

– Optimal choice of AGs (Sec. 4.1, Fig. 1B, Table 2)

– Empirical evaluation of Result 1 (Sec. 4.2, Table 3)

– Impact of cPAE (Sec. 4.3, Fig. 1C)

– Time complexity analysis (Sec. 4.4, Table 4)

– Qualitative analysis (Sec. 4.5, Fig. 2, 3, 4, 5)

– Quantitative analysis (Sec. 4.6, Table 5, 6)

1. Notations
We summarize the notations used in the paper in Table 1.
The notations are listed under 5 groups viz. Distributions,
Datasets, Networks, Samples/Outputs and Theoretical.

2. Extended theoretical insights
2.1. Discussion on Result 1

To analyze possible solutions to the paradigm defined in
Definition 1 of the paper, we introduce three configurations:
1) ERM (empirical risk minimization) i.e. weighting each
multi-source domain equally, 2) domain-experts++ (DE++)
i.e. an ERM subspace together with K subspaces formed

Table 1. Notation Table

Symbol Description

D
is

tr
ib

ut
io

n ps Marginal source input distribution
pt Marginal target input distribution
py Marginal output distribution
psi Marginal ith aug. source input distr.

D
at

as
et

s

Ds Labeled source dataset
Dsi ith-AG source dataset
Dsg Global source dataset
D−si ith-leave-one-out source dataset
Dt Unlabeled target dataset
D̂t Pseudo-labeled target dataset

N
et

w
or

ks

F Shared CNN backbone
Hg Global output head
Hi ith non-global output head
Fg Backbone F and first block of Hg

Q Conditional Prior-enforcing AE

Sa
m

pl
es

/O
ut

pu
ts (xs, ys) Labeled source sample
Ti(·) ith augmentation

(xsi , ys) ith augmentation sample
xt Unlabeled target sample

(xt, ŷt) Pseudo-labeled target sample
hg Output of Hg ◦ F
hi Output of Hi ◦ F

T
he

or
et

ic
al εt(h) Expected target error of hypothesis h

α Source convex combination weights
Hα Hypothesis subspace for particular α
tj jth target domain

from one specific domain each, 3) leave-one-out++ (LO++)
i.e. an ERM subspace together withK subspaces formed by
all domains except one each. We restate the result here:

εt(h ∈ ALO++) ≤ εt(h ∈ HERM)

εt(h ∈ ADE++) ≤ εt(h ∈ HERM)
(1)

Proof. We give the proof by contradiction. Let the optimal
hypothesis from LO++ have a higher target error than ERM
i.e. εt(h ∈ ALO++) > εt(h ∈ HERM). However, this implies
that it cannot be the optimal hypothesis because an ERM
hypothesis within LO++ has a lower target error. This is
a contradiction which proves the result. The same can be

1

https://sites.google.com/view/sfdaseg
https://sites.google.com/view/sfdaseg

shown for the DE++ case. In other words, the ERM sub-
space in DE++ or LO++ can provide the optimal hypothe-
sis in the worst case and the equality in Eq. 1 will hold.

2.2. Augmentation selection criteria

From Eq. 3 of the paper, we know that the augmentation
Ti modifies the non-causal domain-related factor fs by a
weight γi and introduces a new augmentation-related factor
fi without altering the causal class factor fy . For a general
augmentation, we cannot restrict γi i.e. γi ∈ R. However,
since we need to restrict the number of domains K, aug-
mentations need to be filtered out. The important criteria
for this filtering is the ability of the augmentation to sim-
ulate new domains while suppressing the original domain.
Assuming that each augmentation is capable of introducing
new domain-specific features, it is crucial for it to reduce
the influence of the original domain. Thus, in Definition 2
in the paper, the selection criteria is |γi| < 1.

Due to the hypothetical nature of the decomposition of a
sample into class-specific and domain-specific factors, it is
not feasible to use the criteria on γi directly. However, mod-
els usually rely on both class-specific and domain-specific
factors for prediction [22]. Thus, the performance of a
standard single-source-trained model on augmented sam-
ples can be a good measure of the residual original domain
dependency. An augmentation causing low performance for
the pretrained model is likely to be suppressing the original
domain factors. In other words, the model is unable to latch
onto the original domain factors for prediction. This gives
the surrogate condition in Eq. 4 of the paper. However, the
candidate augmentations must be manually filtered to not
select those that perturb the class-relevant factors since it is
not ensured through this criteria.

3. Implementation Details

In this section, we describe the network architectures,
datasets, the training process used for vendor-side and
client-side training and other implementation details.

3.1. Experimental settings

a) Network architectures. Following [15, 33], we employ
2 widely-used network architectures for the DA setting on
semantic segmentation, DeepLabv2 [2] with ResNet101 [7]
backbone and FCN8s [18] with VGG16 [27] backbone. For
DeepLabv2-ResNet101 and FCN8s-VGG16, we define the
shared backbone F upto Layer3 block and Conv4 block
respectively. The remaining networks are taken as output
head for both. Thus, at the inference stage, our model has
exactly the same amount of parameters as used in the prior-
arts. We use a fully convolutional architecture for the con-
ditional Prior-enforcing Auto-Encoder (cPAE) with asym-
metric encoder and decoder as shown in Table 7.

b) Datasets. We extensively evaluate the proposed
approach on two popular synthetic-to-real benchmarks
i.e., GTA5→Cityscapes and SYNTHIA→Cityscapes. For
GTA5 [23], we resize the image to 1280 × 720 before ran-
domly cropping to 1024 × 512. Whereas, for SYNTHIA
[24], we resize to 1280×760 and random crop to 1024×512
following [33]. For Cityscapes [5], we resize the image to
1024 × 512. For GTA5 we use 24500 images for training
and 466 images for validation. Whereas, for SYNTHIA we
use 9000 images for training and 400 images for valida-
tion. For client-side evaluation, we use Cityscapes training
dataset for training and the standard validation set for test-
ing [33]. Following previous works [20, 29, 38], we use
multi-scale testing to report the final performance.
c) Augmentations. We provide extra details about the AGs
to enhance the reproducibility of our experiments.

Aug-A: We used images from a style transfer dataset [9]
and release them with the code. For random noise, we used
uniform sampling from 0 to 255 for every pixel location.

Aug-B: We used this augmentation from the code release
of [10] as provided. No controllable parameter available.

Aug-C: We set the strength of stylization (α) to 0.3
which balances stylization and content preservation.

Aug-D: For snow and frost augmentation, we uniformly
sample the severity between 1 and 3 (max. severity 5 possi-
ble in [11]) to balance stylization and content preservation.

Aug-E: No controllable parameter in cartoon AG [11].

3.2. Vendor-side training

The vendor-side training involves multi-head SoMAN
training followed by cPAE training, as described in Algo. 1.

In SoMAN training, at each iteration, an image sampled
from the source dataset Ds is augmented using a random
AG. Since we train each head in a leave-one-out manner,
the global head and K − 1 non-global heads are trained
at each iteration (L2-L14). We update the parameters of
each head using a separate optimizer (L13). The momentum
parameters in the optimizers adaptively scale the gradients
thereby avoiding loss-scaling hyperparameters.

In cPAE training, we use the trained non-global heads
from SoMAN to generate noisy seg-maps for denoising auto-
encoder training. We augment source samples with a ran-
domly chosen ith AG (L17-19). Next, these are passed
through the corresponding ith non-global head which was
trained to be sensitive to that AG, thereby yielding noisy
seg-maps (L20). The cPAE predictions for these noisy seg-
maps are used to compute the cross-entropy loss with the
ground truth seg-maps. This loss is minimized using a SGD
optimizer to update the cPAE parameters (L21-L23).

3.3. Client-side training

The client-side training requires optimal head identifica-
tion, pseudo-label extraction and self-training, as in Algo. 2.

2

70

45

40

35

30

m
Io

U
 (%

)

5

Standard
single-source

mIoU

No. of AGs,
4321

B. Effect of no. of AGs (K)

10

40

%
 o

f c
or

re
ct

 p
ix

el
s

w
/o

 c
PA

E

O
nc

e

Tw
ic

e

Th
ric

e

+ve-region -ve-region

C. Analyzing inference via cPAE

Repeated inference via cPAE →

E E
, B

E
, B

, C

E
, B

, C
, D

E
, B

, C
, D

, A

70

60

50

40

30

20

10

FDA-S
tyl

e

FDA-R
an

d

Styl
eA

ug
Ada

IN
Sno

w
Fros

t

Cart
oo

n

Avg
Blur

Rota
tio

n
Nois

e

Bila
ter

al

m
Io

U
 (%

)

Augmentations

A
G

-A

A
G

-B
A
G

-C

A
G

-D

A
G

-E

W
ea
k-

au
gm

en
ta
tio
ns

Standard single-source mIoU

A. AG selection criteria

Figure 1. A. Selecting AGs from a set of candidate augmentations via inference through a standard single-source trained model (see
Sec. 4.1). B. Performance of vendor-side trained models varying K on Cityscapes. Performance saturates as K reaches 5 (see Sec. 4.1).
C. Impact of cPAE on correctly (+ve) and incorrectly (-ve) predicted regions on Cityscapes for a given model (see Sec. 4.3).

In optimal head identification, for a given target, the head
with the lowest εt(h) has to be chosen as per Result 1. Since
the computation of εt(h) is intractable, we choose a proxy
i.e. average self-entropy on the target training set (L2). Intu-
itively, the head closest to the target domain will be selected
as it would be the most confident (lowest self-entropy).

In pseudo-label extraction, we first process the entire tar-
get training dataset (L3-L11) and store the spatial class pre-
dictions (L8) and the prediction probabilities (L9). To avoid
noisy predictions, we determine class-wise thresholds (L12-
L16) which are set at 33% of the most confident predictions
per class. Finally, we apply the class-wise thresholds (L17-
23) and assign an unlabeled ‘unknown’ class to the pixels
which do not satisfy the threshold. These unlabeled pixels
are not considered in the loss computation during training.

In self-training, we use the pseudo-labeled target dataset
to train in a supervised manner (L24-30). Specifically,
we train a block under the shared backbone F (L29) us-
ing the optimal head predictions and pseudo-labels. For
DeepLabv2-ResNet101, this block is Layer3 while for
FCN8s-VGG16, it is Conv3+Conv4 blocks. We find this
to perform better than training the entire backbone F . We
perform 3 rounds of offline pseudo-label extraction and self-
training, following [33]. Further, we find that the perfor-
mance does not increase with more than 3 rounds.

3.4. Optimization details

We implement our framework on PyTorch [21]. Fol-
lowing [15], for DeepLabv2-ResNet101, we use SGD opti-
mizer with momentum 0.9, initial learning rate 2.5e-4 with a
polynomial learning rate decay with power 0.9, and weight
decay 5e-4. For FCN8s-VGG16, we use Adam [14] op-
timizer with initial learning rate 1e-5 with step decay of
0.1 at every 20k steps. We train for 50k iterations each in
vendor-side and in each round of self-training. With mixed
precision, we use batch size 2 on a GTX1080Ti GPU.

4. Analysis

In this section, we analyze the choice of AGs, the empiri-
cal evaluation of Result 1 and the impact of cPAE. We show
extended quantitative and qualitative evaluations of our ap-
proach and training time comparisons with prior arts.

4.1. Optimal choice of AGs

The choice of number of AGs and the AGs themselves is
critical to the success of vendor-side training. We describe
the AG candidates and those used by prior arts in Table 2.
Firstly, it is important to choose diverse AGs to facilitate the
learning of both domain-invariant and domain-specific fea-
tures by the proposed SoMAN. Secondly, a higher number of
AGs (K) and correspondingly non-global output heads incur
additional computational cost in the vendor-side training.
Thus, it is crucial to determine a low enough K that yields
a significant performance improvement.

Towards the first, Fig. 1A shows the selection of diverse
AGs from a set of candidates using the performance of a
standard single-source trained model. This is according to
Definition 2 in the paper using mIoU (task metric) with a
threshold of 25%. We observe that weaker augmentations
that do not produce enough domain-shift get filtered out.

Towards the second, we analyze the effect of number of
AGs on the performance in Fig. 1B. Particularly, we eval-
uate vendor-side trained models with varying number of
AGs used during training. Since there are multiple ways to
choose from the set of candidate AGs, we choose the most
diverse ones first to ensure the best possible performance for
a lower K. In other words, the AG giving the most deterio-
ration in mIoU for a standard single-source trained model is
chosen first. Fig. 1A shows that the order is E, B, C, D, A.
Using this order to choose AGs for K = {1, 2, . . . , 5}, we
observe that performance saturates as K reaches 5. Thus,
we infer that the computational burden of adding more AGs
would not result in a substantial performance improvement.

3

Algorithm 1 Pseudo-code for vendor-side training
1: Input: source dataset Ds, standard single-source

trained model Fs, Hs

. Note that CE denotes class-weighted cross-entropy.

Step 1: SoMAN training

2: Initialize F,Hg, {Hi}Ki=1 using Fs, Hs

3: for iter < MaxIter do:
4: xs, ys ← batch sampled from Ds
5: i1 ← rand(1,K)
6: x̃s ← Ti1(xs)
7: hg ← Hg(F (x̃s))
8: Compute Lg ← CE(hg, ys)
9: for i in range(K) except {i1} do:

10: hi ← Hi(F (x̃s))
11: Compute Li ← CE(hi, ys)
12: end for
13: update θHg

, {θHi
}Ki=1,i6=i1 by minimizing

Lg, {Li}Ki=1,i6=i1 using separate optimizers
14: end for

Step 2: cPAE training

15: Randomly initialize cPAE Q; freeze F,Hg, {Hi}Ki=1

from Step 1 training.
16: for iter < MaxIter do:
17: xs, ys ← batch sampled from Ds
18: i← rand(1,K) . Randomly choose an AG
19: xsi ← Ti(xs) . Augment xs
20: hi ← Hi(F (xsi))

21: ĥi ← Q(hi, Fg(xsi))

22: Compute Lq ← CE(ĥi, ys)
23: update θQ by minimizing Lq using SGD optimizer
24: end for

4.2. Empirical evaluation of Result 1

To empirically evaluate Result 1 of the paper, we mea-
sure the performance of each SoMAN head for a variety of
target scenarios as shown in Table 3. We observe that differ-
ent heads of the SoMAN give the best performance in differ-
ent target scenarios. Further, in most scenarios, at least one
of the leave-one-out heads performs better than ERM. This
is in line with Result 1 i.e. one of the leave-one-out heads
gives a lower or equal target risk than ERM.

For Foggy-Cityscapes (0.02) [25], we observe that ERM
is optimal which can be considered as a worst-case scenario
(large domain-shift). On the other hand, Foggy-Cityscapes
(0.01) and (0.005) both have LO-E as the optimal head since
they represent similar domain-shifts. Further, for NTHU-
Cross-City [4], different heads are optimal for different
cities since each city presents a different domain-shift.

Algorithm 2 Pseudo-code for client-side training
1: Input: Trained SoMAN (F,Hg, {Hi}Ki=1) and cPAE

(Q) from vendor, unlabeled target dataset Dt
. Let [·] denote the indexing operation, ·||· denote the
append operation, | · | denote the cardinality, and C be
the number of classes.

Step 1: Optimal head identification
2: i′ ← argmini∈{g,[K]}

∑
x∈Dt
{−〈hi, log hi〉} where

hi = Hi(F (x))∀ i . Lowest average self-entropy
Step 2: Pseudo-label extraction

3: Yp ← {} . Empty ordered list
4: W ← {} . Empty ordered list
5: Xp ← {} . Empty ordered list
6: for x in Dt do:
7: ĥ = Q(Hi′(F (x)), Fg(x))

8: yp ← argmaxc∈C ĥ[c] . Class predictions
9: w ← maxc∈C ĥ[c] . Predicted class probabilities

10: W,Yp, Xp ←W || w, Yp || yp, Xp || x
11: end for
12: t← {} . List of class-wise thresholds
13: for c in range(C) do:
14: Store all prediction probabilities of class c in px

px ←W [Yp == c]
px ← sort(px)

15: Set threshold at top 33% most confident predictions
t← t || px[0.66|px|]

16: end for
17: D̂t ← {} . Empty ordered list
18: for yp, w, xp in Yp,W,Xp do:
19: for c in range(C) do:

Assign class-id, C +1 representing ‘unknown’,
to pixels with probability < class threshold t[c]

20: yp[(w < t[c])&(yp == c)]← C + 1
21: end for
22: D̂t ← D̂t || (xp, yp)
23: end for

Step 3: Source-free self-training adaptation
24: Obtain F,Hi′ from vendor (or last self-training round)
25: for iter < MaxIter do:
26: xt, yt ← batch sampled from D̂t
27: ĥ← Hi′(F (xt))

28: Compute Lt ← CE(ĥ, yt)
29: update trainable parameters of θF by minimizing

Lt using SGD optimizer
30: end for

4

Table 2. AG candidates and augmentations used by prior arts. TF
indicates target-free i.e. whether augmentation requires target data.
Method TF Description

FDA [33] × Target images as reference for stylization in Fourier domain.
LTIR [13] × Uses style-swap [3] with target images as reference.
BDL [15] × Image-to-image translation for source→target conversion.
LDR [30] × Image-to-image translation for target→source conversion.
Ours-A X FDA [33] with random and style images as reference.
Ours-B X Stylization by randomly sampled style embedding [10].
Ours-C X AdaIN [9] layers for stylization using reference images.
Ours-D X Varying levels of weather augmentations [11]: frost and snow.
Ours-E X Converts image into texture-less cartoon-like image [11].
Ours-W1 X Blurring using a 5× 5 average filter.
Ours-W2 X Rotating image by an angle ∈ [−15, 15] degrees.
Ours-W3 X Adding random noise to the image.
Ours-W4 X Edge-preserved smoothing using bilateral filtering.

Table 3. Empirical evaluation of Result 1 for vendor-side SoMAN
heads with mIoU for various target scenarios. LO indicates leave-
one-out head while ERM is the global head. 0.005, 0.01, and 0.02
indicate the levels of fog in the dataset. We observe that different
heads are optimal for different target domains.

Head Cityscapes Foggy-Cityscapes NTHU-Cross-City

0.005 0.01 0.02 Rio Rome Taipei Tokyo

ERM 43.1 43.6 42.4 38.3 47.0 48.7 43.4 44.5
LO-A 42.4 43.0 41.6 36.7 45.4 48.9 43.2 45.4
LO-B 42.2 42.2 40.7 36.1 49.0 47.7 42.1 46.5
LO-C 43.1 43.0 41.7 37.8 48.1 48.6 43.8 46.7
LO-D 43.5 43.4 41.7 37.0 45.6 47.9 43.9 45.3
LO-E 43.2 43.9 42.6 37.9 45.5 47.0 43.6 45.9

4.3. Impact of cPAE

We train the proposed cPAE as a denoising autoencoder
to encourage spatial regularities in the segmentation predic-
tions. In Fig. 1C, we analyze the effect of inference via
cPAE. Particularly, we hypothesize that the cPAE should
not distort regions that were correctly predicted by the seg-
mentation network. This is desirable to retain the inductive
bias in the absence of target labels. For a given segmenta-
tion network, we determine these regions, denoted as +ve-
regions, and the regions where the segmentation network
failed, denoted as -ve-regions. Next, we use the cPAE on
the segmentation predictions and evaluate the performance
in the two previously determined regions. We also evaluate
repeated inference via cPAE i.e. passing the output of the
cPAE through the cPAE again. We observe that the per-
formance in the +ve-region is almost the same while it im-
proves in the -ve-region. Further, we observe that repeated
inference via cPAE does not give any significant improve-
ment. Thus, we resort to inferring via cPAE only once.

4.4. Time complexity analysis

Our proposed client-side adaptation trains the shared
backbone F partially and does not require any additional
networks like adversarial discriminators during the training.

Table 4. Training time comparison of adaptation step with prior
arts. AN indicates whether additional networks are involved in the
adaptation training.

Method AN Training time (per iter.) (seconds)

PCEDA [32] X 0.94
FDA [33] × 0.90
Ours × 0.31

Further, we offer a simple adaptation pipeline without re-
quiring access to source data. These factors lead to a lower
training time (Table 4) for our client-side adaptation com-
pared to prior arts while maintaining state-of-the-art adap-
tation performance. This makes it suitable for practical and
even online adaptation scenarios.

We perform the analysis (Table 4) by measuring the av-
erage time taken for forward pass, backward pass and the
optimizer step (network weights update) for each method.
For FDA and PCEDA, the time per iteration is higher since
they train the entire model while using FFT-based augmen-
tation and an image-to-image translation network respec-
tively. For a fair comparison, we use batch size 1 (without
automatic mixed precision) for all methods and evaluate on
a machine with Intel Xeon E3-1200 CPU, 32GB RAM and
a single 11GB NVIDIA GTX1080Ti GPU using Python 3,
PyTorch 1.6 and CUDA 10.2.

4.5. Qualitative analysis

We provide extended qualitative results of our proposed
approach on GTA5→Cityscapes [23, 5] in Fig. 5. Further,
we show examples of the paired samples used for the train-
ing of cPAE in Fig. 2 and examples of the devised AGs ap-
plied to the GTA5 dataset in Fig. 3. We also show quali-
tative results of online adaptation to NTHU-Cross-City [4]
and Foggy-Cityscapes [25] in Fig. 4.

We also observe some failure cases in Fig. 5 (indicated
by white circles) where merged-region problems occur for
smaller-sized classes in the scene. More explicit ways of
inculcating shape priors may improve the performance fur-
ther. We plan to explore this direction in our future work.

4.6. Quantitative analysis

We provide extended quantitative results on the
GTA5→Cityscapes and SYNTHIA→Cityscapes [24]
benchmarks for semantic segmentation in Tables 5, 6. We
obtain state-of-the-art performance across all settings even
against non-source-free approaches.

References
[1] Mathilde Bateson, Hoel Kervadec, Jose Dolz, Herve Lom-

baert, and Ismail Ben Ayed. Source-relaxed domain adapta-
tion for image segmentation. In MICCAI, 2020. 7

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

5

G
T

cP
A

E
 In

pu
t

G
T

cP
A

E
 In

pu
t

Figure 2. Paired samples for cPAE training. cPAE is trained as a denoising autoencoder to encourage structural regularity in segmentation
predictions and alleviate merged-region (yellow circle) and splitted-region (blue circle) problems. Best viewed in color.

Normal Aug-A Aug-B Aug-C Aug-D Aug-E

Figure 3. Examples of AGs applied to GTA5 dataset images. Notice the diversity in the augmentations. Best viewed in color.

6

Table 5. Quantitative evaluation on GTA5→Cityscapes. Performance on different segmentation architectures: A (DeepLabv2 ResNet-
101), B (FCN8s VGG-16). SF indicates whether the method supports source-free adaptation. Ours (V) indicates use of our vendor-side
AGs with prior art and * indicates reproduced by us using released code. We observe better or competitive performance on minority classes
like motorcycle compared to non-source-free prior arts.

Method

A
rc

h. SF ro
ad

sid
ew

al
k

bu
ild

in
g

w
al

l
fe

nc
e

po
le

t-l
ig

ht
t-s

ig
n

ve
ge

ta
tio

n
te

rra
in

sk
y

pe
rs

on

rid
er

ca
r

tru
ck

bu
s

tra
in

m
ot

or
cy

cl
e

bi
cy

cl
e

mIoU

PLCA [12] A × 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7
CrCDA [8] A × 92.4 55.3 82.3 31.2 29.1 32.5 33.2 35.6 83.5 34.8 84.2 58.9 32.2 84.7 40.6 46.1 2.1 31.1 32.7 48.6
PIT [19] A × 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
TPLD [26] A × 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2
RPT [35] A × 89.7 44.8 86.4 44.2 30.6 41.4 51.7 33.0 87.8 39.4 86.3 65.6 24.5 89.0 36.2 46.8 17.6 39.1 58.3 53.2
FADA [29] A × 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
IAST [20] A × 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
Ours (V) + FADA* A × 91.2 51.0 86.6 43.6 30.3 37.1 43.7 25.2 87.9 40.2 88.2 64.7 38.4 85.5 32.0 46.8 6.6 25.9 37.5 50.6
Ours (V) + IAST* A × 94.8 59.4 86.2 40.5 29.5 25.5 43.8 34.7 85.9 34.9 89.5 63.4 30.8 88.3 42.6 50.7 25.3 35.7 40.9 52.8
URMA [28] A X 92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1
SRDA* [1] A X 90.5 47.1 82.8 32.8 28.0 29.9 35.9 34.8 83.3 39.7 76.1 57.3 23.6 79.5 30.7 40.2 0.0 26.6 30.9 45.8
Ours (w/o cPAE) A X 90.9 48.6 85.5 35.3 31.7 36.9 34.7 34.8 86.2 47.8 88.5 61.7 32.6 85.9 46.9 50.4 0.0 38.9 52.4 51.6
Ours (w/ cPAE) A X 91.7 53.4 86.1 37.6 32.1 37.4 38.2 35.6 86.7 48.5 89.9 62.6 34.3 87.2 51.0 50.8 4.2 42.7 53.9 53.4

BDL [15] B × 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
LTIR [13] B × 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3
LDR [30] B × 90.1 41.2 82.2 30.3 21.3 18.3 33.5 23.0 84.1 37.5 81.4 54.2 24.3 83.0 27.6 32.0 8.1 29.7 26.9 43.6
FADA [29] B × 92.3 51.1 83.7 33.1 29.1 28.5 28.0 21.0 82.6 32.6 85.3 55.2 28.8 83.5 24.4 37.4 0.0 21.1 15.2 43.8
PCEDA [32] B × 90.2 44.7 82.0 28.4 28.4 24.4 33.7 35.6 83.7 40.5 75.1 54.4 28.2 80.3 23.8 39.4 0.0 22.8 30.8 44.6
SFDA [17] B X 81.8 35.4 82.3 21.6 20.2 25.3 17.8 4.7 80.7 24.6 80.4 50.5 9.2 78.4 26.3 19.8 11.1 6.7 4.3 35.8
Ours (w/o cPAE) B X 90.1 44.2 81.7 31.6 19.2 27.5 29.6 26.4 81.3 34.7 82.6 52.5 24.9 83.2 25.3 41.9 8.6 15.7 32.2 43.4
Ours (w/ cPAE) B X 92.9 56.9 82.5 20.4 6.0 30.8 34.7 33.2 84.6 17.0 88.9 62.3 30.7 85.1 15.3 40.6 10.2 30.1 50.4 45.9

Table 6. Quantitative evaluation on SYNTHIA→Cityscapes. Performance on different segmentation architectures: A (DeepLabv2
ResNet-101), B (FCN8s VGG-16). mIoU and mIoU* are averaged over 16 and 13 categories respectively. SF indicates whether the
method supports source-free adaptation.

Method

A
rc

h. SF ro
ad

sid
ew

al
k

bu
ild

in
g

w
al

l*
fe

nc
e*

po
le

*
t-l

ig
ht

t-s
ig

n
ve

ge
ta

tio
n

sk
y

pe
rs

on

rid
er

ca
r

bu
s

m
ot

or
cy

cl
e

bi
cy

cl
e

mIoU mIoU*

CAG [34] A × 84.8 41.7 85.5 - - - 13.7 23.0 86.5 78.1 66.3 28.1 81.8 21.8 22.9 49.0 - 52.6
APODA [31] A × 86.4 41.3 79.3 - - - 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 - 53.1
PyCDA [16] A × 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3
TPLD [26] A × 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5
USAMR [37] A × 83.1 38.2 81.7 9.3 1.0 35.1 30.3 19.9 82.0 80.1 62.8 21.1 84.4 37.8 24.5 53.3 46.5 53.8
RPL [36] A × 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
IAST [20] A × 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0
RPT [35] A × 89.1 47.3 84.6 14.5 0.4 39.4 39.9 30.3 86.1 86.3 60.8 25.7 88.7 49.0 28.4 57.5 51.7 59.5
URMA [28] A X 59.3 24.6 77.0 14.0 1.8 31.5 18.3 32.0 83.1 80.4 46.3 17.8 76.7 17.0 18.5 34.6 39.6 45.0
Ours (w/o cPAE) A X 89.0 44.6 80.1 7.8 0.7 34.4 22.0 22.9 82.0 86.5 65.4 33.2 84.8 45.8 38.4 31.7 48.1 55.5
Ours (w/ cPAE) A X 90.5 50.0 81.6 13.3 2.8 34.7 25.7 33.1 83.8 89.2 66.0 34.9 85.3 53.4 46.1 46.6 52.0 60.1

PyCDA [16] B × 80.6 26.6 74.5 2.0 0.1 18.1 13.7 14.2 80.8 71.0 48.0 19.0 72.3 22.5 12.1 18.1 35.9 42.6
SD [6] B × 87.1 36.5 79.7 - - - 13.5 7.8 81.2 76.7 50.1 12.7 78.0 35.0 4.6 1.6 - 43.4
FADA [29] B × 80.4 35.9 80.9 2.5 0.3 30.4 7.9 22.3 81.8 83.6 48.9 16.8 77.7 31.1 13.5 17.9 39.5 46.0
BDL [15] B × 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0 46.1
PCEDA [32] B × 79.7 35.2 78.7 1.4 0.6 23.1 10.0 28.9 79.6 81.2 51.2 25.1 72.2 24.1 16.7 50.4 41.1 48.7
Ours (w/o cPAE) B X 88.5 45.4 79.8 2.8 2.2 27.4 18.4 25.4 82.4 83.6 55.9 12.1 72.8 25.6 3.5 12.9 40.0 46.7
Ours (w/ cPAE) B X 89.9 48.8 80.9 2.9 2.5 28.1 19.5 26.2 83.7 84.9 57.4 17.8 75.6 28.9 4.3 17.2 41.3 48.9

7

Table 7. Network architecture of cPAE. Conv* denotes standard convolutional layer followed by a batch-normalization with Parametric-
ReLU non-linearity, Dconv denotes standard convolutional layer with Dilation, Tanh denotes hyperbolic tangent non-linearity,

⊕
denotes

element-wise tensor addition, Conv** denotes standard convolutional layer followed by a batch-normalization with ReLU non-linearity,
Tconv* denotes transpose convolutional layer followed by a batch-normalization with Parametric-ReLU non-linearity, || denotes channel-
wise concatenation, Fg consists of SoMAN backbone F and first block of global head Hg and input x is an RGB image (512× 1024× 3).

Layer Input Type Filter | Stride | Dilation Output Size

E
nc

od
er

C1 ŷ Conv* 7× 7, 64 | 1 | - 512× 1024× 64
C2 C1 Conv* 3× 3, 128 | 2 | - 256× 512× 128
C3 C2 Conv* 7× 7, 128 | 1 | - 256× 512× 128
C4 C3 Conv* 3× 3, 256 | 2 | - 128× 256× 256
C5 C4 Conv* 7× 7, 256 | 1 | - 128× 256× 256
C6 C5 Conv* 3× 3, 512 | 2 | - 64× 128× 512
C7 C6, Fg(x) || - 64× 128× 2560
C8 C7 Dconv 3× 3, 512 | 1 | 2 64× 128× 512
C9 C7 Dconv 3× 3, 512 | 1 | 4 64× 128× 512
C10 C7 Dconv 3× 3, 512 | 1 | 8 64× 128× 512
C11 C7 Dconv 3× 3, 512 | 1 | 16 64× 128× 512
C12 C8, C9, C10, C11

⊕
- 64× 128× 512

C13 C12 Conv+Tanh 1× 1, 512 | 1 | - 64× 128× 512

D
ec

od
er

C14 C13 Conv** 3× 3, 512 | 1 | - 64× 128× 512
C15 C14 Conv* 3× 3, 512 | 1 | - 64× 128× 512
C16 C15 Conv* 7× 7, 256 | 1 | - 64× 128× 256
C17 C16 Tconv* 3× 3, 256 | 2 | - 128× 256× 256
C18 C17 Conv* 7× 7, 128 | 1 | - 128× 256× 128
C19 C18 Tconv* 3× 3, 64 | 2 | - 256× 512× 64
C20 C19 Conv 7× 7, 19 | 1 | - 256× 512× 19

Upsampling C20 Interpolation - 512× 1024× 19

segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 2

[3] Tian Qi Chen and Mark Schmidt. Fast patch-based style
transfer of arbitrary style, 2016. 5

[4] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai,
Yu-Chiang Frank Wang, and Min Sun. No more discrimi-
nation: Cross city adaptation of road scene segmenters. In
ICCV, 2017. 4, 5

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 2, 5

[6] Liang Du, Jingang Tan, Hongye Yang, Jianfeng Feng, Xi-
angyang Xue, Qibao Zheng, Xiaoqing Ye, and Xiaolin
Zhang. Ssf-dan: Separated semantic feature based domain
adaptation network for semantic segmentation. In ICCV,
2019. 7

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[8] Jiaxing Huang, Shijian Lu, Dayan Guan, and Xiaobing
Zhang. Contextual-relation consistent domain adaptation for
semantic segmentation. In ECCV, 2020. 7

[9] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017. 2, 5

[10] Philip T Jackson, Amir Atapour-Abarghouei, Stephen Bon-
ner, Toby P Breckon, and Boguslaw Obara. Style augmenta-
tion: Data augmentation via style randomization. In CVPR
Workshops, 2019. 2, 5

[11] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi
Tanaka, Jake Graving, Christoph Reinders, Sarthak Ya-
dav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng Rui,
Jirka Borovec, Christian Vallentin, Semen Zhydenko, Kil-
ian Pfeiffer, Ben Cook, Ismael Fernández, François-Michel
De Rainville, Chi-Hung Weng, Abner Ayala-Acevedo,
Raphael Meudec, Matias Laporte, et al. imgaug. https://
github.com/aleju/imgaug, 2020. Online; accessed
01-Feb-2020. 2, 5

[12] Guoliang Kang, Yunchao Wei, Yi Yang, Yueting Zhuang,
and Alexander Hauptmann. Pixel-level cycle association: A
new perspective for domain adaptive semantic segmentation.
In NeurIPS, 2020. 7

[13] Myeongjin Kim and Hyeran Byun. Learning texture invari-
ant representation for domain adaptation of semantic seg-
mentation. In CVPR, 2020. 5, 7

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

8

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug

Image GT Baseline Vendor-Side Client-Side (w/o cPAE) Client-Side (w/ cPAE) Online-Adapted

R
io

R
om

e
Ta

ip
ei

To
ky

o
Fo

gg
y-

C
ity

sc
ap

es

Figure 4. Qualitative evaluation of GTA5→Cityscapes and online adapted models on NTHU-Cross-City and Foggy-Cityscapes datasets.
The performance generally improves from vendor-side to client-side to online-adapted model. Best viewed in color.

9

Vendor-sideBaselineGTImage Client-side (w/o cPAE) Client-side (w/ cPAE)

Figure 5. Qualitative evaluation of the proposed approach. Vendor-side model generalizes better than baseline but performs worse than
client-side due to the domain gap. Inculcating prior knowledge from cPAE structurally regularizes the predictions and overcomes merged-
region (yellow circle) and splitted-region (blue circle) problems. Some failure cases are also shown (white circle). Best viewed in color.

[15] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional
learning for domain adaptation of semantic segmentation. In
CVPR, 2019. 2, 3, 5, 7

[16] Qing Lian, Fengmao Lv, Lixin Duan, and Boqing Gong.
Constructing self-motivated pyramid curriculums for cross-
domain semantic segmentation: A non-adversarial approach.
In ICCV, 2019. 7

[17] Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain
adaptation for semantic segmentation. In CVPR, 2021. 7

[18] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 2

[19] Fengmao Lv, Tao Liang, Xiang Chen, and Guosheng Lin.

Cross-domain semantic segmentation via domain-invariant
interactive relation transfer. In CVPR, 2020. 7

[20] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. In-
stance adaptive self-training for unsupervised domain adap-
tation. In ECCV, 2020. 2, 7

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 3

10

[22] Xingchao Peng, Zijun Huang, Ximeng Sun, and Kate
Saenko. Domain agnostic learning with disentangled rep-
resentations. In ICML, 2019. 2

[23] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In ECCV, 2016. 2, 5

[24] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In CVPR, 2016. 2, 5

[25] Christos Sakaridis, Dengxin Dai, Simon Hecker, and Luc
Van Gool. Model adaptation with synthetic and real data for
semantic dense foggy scene understanding. In ECCV, 2018.
4, 5

[26] Inkyu Shin, Sanghyun Woo, Fei Pan, and In So Kweon. Two-
phase pseudo label densification for self-training based do-
main adaptation. In ECCV, 2020. 7

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 2

[28] Prabhu Teja Sivaprasad and Francois Fleuret. Uncertainty
reduction for model adaptation in semantic segmentation. In
CVPR, 2021. 7

[29] Haoran Wang, Tong Shen, Wei Zhang, Lingyu Duan, and
Tao Mei. Classes matter: A fine-grained adversarial ap-
proach to cross-domain semantic segmentation. In ECCV,
2020. 2, 7

[30] Jinyu Yang, Weizhi An, Sheng Wang, Xinliang Zhu,
Chaochao Yan, and Junzhou Huang. Label-driven recon-
struction for domain adaptation in semantic segmentation. In
ECCV, 2020. 5, 7

[31] Jihan Yang, Ruijia Xu, Ruiyu Li, Xiaojuan Qi, Xiaoyong
Shen, Guanbin Li, and Liang Lin. An adversarial perturba-
tion oriented domain adaptation approach for semantic seg-
mentation. In AAAI, 2020. 7

[32] Yanchao Yang, Dong Lao, Ganesh Sundaramoorthi, and Ste-
fano Soatto. Phase consistent ecological domain adaptation.
In CVPR, 2020. 5, 7

[33] Yanchao Yang and Stefano Soatto. Fda: Fourier domain
adaptation for semantic segmentation. In CVPR, 2020. 2,
3, 5

[34] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Cat-
egory anchor-guided unsupervised domain adaptation for se-
mantic segmentation. In NeurIPS, 2019. 7

[35] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Chong-Wah Ngo,
Dong Liu, and Tao Mei. Transferring and regularizing pre-
diction for semantic segmentation. In CVPR, 2020. 7

[36] Zhedong Zheng and Yi Yang. Rectifying pseudo label learn-
ing via uncertainty estimation for domain adaptive seman-
tic segmentation. International Journal of Computer Vision
(IJCV), 2020. 7

[37] Zhedong Zheng and Yi Yang. Unsupervised scene adaptation
with memory regularization in vivo. In IJCAI, 2020. 7

[38] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jin-
song Wang. Confidence regularized self-training. In ICCV,
2019. 2

11

