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1. Model Details

We used variants of VGG5, VGG11, and ResNet12 mod-
els for our experimental evaluations. We followed recom-
mendations from [3, 2] to design the ANN models that yield
low conversion loss. In particular, our ANN models do not
have any batch norm layer nor bias terms. To minimize the
information loss of binary-spike-driven activation maps we
avoided the use of any max-pool layers. The details of each
model is presented in Table 1.

2. Training Hyperparameters

For ANN training, we used the SGD optimizer and
trained with batches of 64 images. For SNN training,
we used the ADAM optimizer with momentum of 0.9, a
dropout rate of 0.2, and a batch-size of 32. For ANN-to-
SNN conversion, we used a single batch of only 512 images
to evaluate the threshold for each layer.

3. Memory Usage and Training Time

Fig. 1 shows the normalized memory for traditional SNN
training (®% ) with rate-coded and direct inputs and the
proposed SNN training (®£ /). The time steps for rate-
coded and direct input were 200 and 8, respectively. Due
to memory limitations, we used a batch-size of 16 for rate-
coded SNNs. For direct input SNNs the batch size is kept
as 32. As we can see in the Fig. 1 compared to rate-coded
SNN training, our proposed training requires up to 2.68x
less memory.
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Figure 1. Comparison of memory usage for traditional vs. pro-
posed SNN training.

Fig. 2 shows a comparison of the training time for the
various SNN training strategies. Compared to traditional
training with rate-coded inputs, the proposed training algo-
rithm requires up to 30.8x less time'.
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Figure 2. Comparison of training time for 6, 400 images for tradi-
tional vs. proposed SNN training.
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4. More Results

Attack strength vs test accuracy for VGG11 on
CIFAR-100. Fig. 3 presents the model performance of
VGG11 on CIFAR-100 under white box PGD attack with
increasing attack strength. As Fig. 3(a) depicts, the perfor-
mance against white box PGD generated images approaches
~0% accuracy when the attack bound € increases. We also
tested our scheme with increasing iterations K and found
that the adversarial performance reaches an asymptote as K
increases beyond 40 (Fig. 3(b)). These trends are similar
to our observations with VGGS5 on CIFAR-10 (Fig. 8 of the
original manuscript).
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Figure 3. White-box PGD attack performance as a function of (a)
bound € and (b) attack iterations K with VGG11 on CIFAR-100.

Weight distribution visualization. HIRE-SNN mod-
els tend to have fewer weights having insignificant absolute

! All experiments were done on a NVIDIA 2080 Ti GPU



Model VGGS5

VGG11 ResNet12

# Parameters 50.6 M

61.36 M 499 M

[C64/3 x 3],[AVG 2 X 2, 2]
[C128/3 x 3], [Drop(pr)]
[C128/3 x 3], [AVG 2 x 2, 2]

Architecture

[C64/3 x 3], [AVG 2 X 2, 2]
[C128/3 x 3], [Drop(pr)]
[C256/3 x 3],[AVG 2 X 2, 2]
3FC [C512/3 x 3] X 2, [Drop(pr)] x 2
[C512/3 x 3], [AVG 2 X 2, 2]
[C512/3 x 3] X 2, [Drop(pr)] x 2
3FC

[C64/3 X 3] X 2, [Drop(pr)] x4
[C64/3 x 3], [AVG 2 x 2,2]
[C64/3 x 3], [Drop(pr)]
[C64/3 x 3] +1
[C128/3 x 3]. [Drop(pr)]
[C128/3 x 3] +[C128/1 x 1]
[C256/3 x 3], [Drop(pr)]
[C256/3 x 3] +[C256/1 x 1]
[C512/3 x 3], [Drop(pr)]
[C512/3 x 3] +[C512/1 x 1]
1FC

Table 1. Description of the models used for our experiments. Activation layers are omitted for for the sake of brevity. Each of the
convolution (C) layers are specified by its number of filters and kernel size. Average pooling layers (AVG) are specified with kernel and
stride size. Dropout layers (Drop) are specified with corresponding drop probability pr. The repetition number of a layer is specified
outside the corresponding bracket. For the 3 x 3 and 1 x 1 CONYV layers strides are 1 and 2, respectively. I represents an identity layer.
Parameters are computed for CIFAR-10 dataset (meaning the output classifier has 10 classes).

values compared to the ones produced by direct-input tra-
ditional SNN training, as exemplified in Fig. 4(a). This is
a generally observed trend in adversarially robust models
[1, 4]. Due to the comparatively higher weight magnitudes,
the HIRE-SNN models do incur higher average SA com-
pared to traditionally trained models on direct inputs. Lay-
erwise this increment in SA can vary from ~30% to ~69%
as is shown in Fig. 4 (b).
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Figure 4. (a) Weight histogram plot of a model trained using pro-
posed and traditional approaches, respectively. (b) Comparison of
spiking activity for VGG11, averaged over 32 test samples.

Ablation with A/, Fig. 5(a) shows the ablation with
different A. The basic motivation to pick hyperparameters
N, €, and €, is to ensure there is only an insignificant drop
in the clean image accuracy while still improving the ad-
versarial performance. Because different models produce
perturbed images of different strengths, we hand-tuned e,
(€¢).

Performance comparison with an adversarially
trained iso-architecture ANN. Fig. 5(b) shows the perfor-
mance comparison of an adversarially trained ANN and cor-
responding HIRE-SNN requiring 2x and 1x training time
compared to their respective baselines, respectively.
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Figure 5. (a) Accuracy vs. iterations N (T' = 6) for VGG5 on
CIFAR-10 under both clean and adversarial images using WB and
BB attacks. As the perturbations become stronger with increased
N, the clean-image classification performance drops. (b) Perfor-
mance for ANN and HIRE-SNN trained with different €.
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