
Unlocking the Potential of Ordinary Classifier: Class-specific Adversarial
Erasing Framework for Weakly Supervised Semantic Segmentation

Table I: Quantitative comparison of the proposed frame-
works with different ordinary classifiers backbones.

Backbone of Ordinary Classifier (mIoU) Ours (mIoU)
ResNet38 (47.8%) 56.0%
ResNet101(46.8%) 52.4%

VGG16 (48.9%) 52.3%

A. Dependency on Ordinary Classifier

The proposed framework is designed to fully exploit the
potential of the ordinary classifier. To demonstrate that
our framework can utilize ordinary classifiers with vari-
ous backbones, we perform experiments by replacing the
backbone of the ordinary classifier from ResNet38 [11] to
ResNet101 [4] or VGG16 [8]. In this experiment, while us-
ing the ordinary classifier with various backbones, we fix
the backbone of the CGNet as ResNet38. Even though the
number of parameters in ResNet38 is less than ResNet101,
high resolution feature maps of ResNet38 are more suitable
for the purpose of the proposed method which focuses on
generating precise CAMs.

As shown in Table I, under the various backbone con-
ditions, the proposed framework enables the CGNet to
achieve significantly higher performance than the perfor-
mance of the ordinary classifier.

B. Ablations Study on Masking Depth
As we mentioned in the main paper, we implement the

ResNet38 [11] as backbone for both the CGNet and the or-
dinary classifier as many other previous works [1,2,7,9,12].
The architecture of the ResNet38 is shown in Fig. I with the
intermediate feature maps and corresponding dimensions.

To the best of our knowledge, the masking methods
in the AE scheme can be categorized into an image-level
masking [6, 10] and a feature-level masking [5, 13]. In the
proposed framework, we apply masking on the image-level
rather than the feature-level. We experimentally verify the
effectiveness of the image-level masking over the feature
level masking within our framework. Figure II shows the
comparison between the masking methods in both qualita-
tive and quantitative manners. In the figure, masking at dm
means that the feature maps with the corresponding order

Figure I: The network architecture of ResNet38.

are masked. For example, when the masking depth dm = 3,
masking is applied on the feature maps which have the di-
mension of H

4 × W
4 × 256. For the fair comparison be-

tween two masking methods, all the hyperparameters in our
framework except masking depth dm are fixed.

As shown in Fig. II, the mIoU of the generated pseudo-
label is significantly higher when the masking is done at
the image-level rather than at the feature-level. In our view,
in order to generate more precise CAMs, masking at the
image-level is a more effective way to precisely erase the
object from the image. This is because features can be en-
tangled in the spatial domain by the receptive field rather
than only representing the specific pixels at their corre-
sponding coordinates. Therefore, even if a certain object
is perfectly erased with a mask, the features near the ob-
ject possibly contain the object-related information, which
makes the features to be undesirably erased when using our
framework. The image-level masking, on the other hand,
literally “erases” only the object on image-level, and if the
masking is perfect, then the network would not be able to
find the object from the image.

As aforementioned, the feature-level masking leads the
CGNet to overly erase the pixels near object boundaries
while the image-level masking enables the CGNet to gener-
ate more precise CAMs. In conclusion, we experimentally
verify that the image-level masking is superior to feature-
level masking in both qualitative and quantitative manners.

C. More Results and Qualitative Comparison
To show that our framework can produce precise CAMs,

more results for PASCAL VOC 2012 not included in the
main paper due to page limit are shown in Fig. III. With



Figure II: Comparison between the image-level masking
and the feature-level masking. Masking depth dm with 0
indicates image-level masking. dm more than 1 denotes
feature-level masking.
those refined CAMs, we generate pseudo pixel-level labels
by applying dense crf and AffinityNet [1]. With the syn-
thesized pseudo-labels, we train the semantic segmentation
network [3]. Also, more results of Deeplab trained by our
pseudo-labels and comparison are shown in Fig. IV.

Qualitative comparison for MS-COCO dataset is also
available in Fig V and Fig. VI, which shows the CAMs and
results of Deeplab trained by pseudo-labels, respectively.
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Figure III: Qualitative comparison of CAMs for PASCAL VOC 2012. From left to right: images, ground-truths, baseline
CAMs with ResNet38 backbone, our CAMs.



Figure IV: Qualitative comparison of semantic segmentation maps for PASCAL VOC 2012. From left to right: images,
ground-truths, Deeplab trained with the baseline [1], Deeplab trained by ours.



Figure V: Qualitative comparison of CAMs for MS-COCO. From top to bottom: images, ground-truth masks, baseline CAMs
with ResNet38 backbone, our CAMs.

Figure VI: Result of semantic segmentation maps for MS-COCO. From top to bottom: images, semantic segmentation maps
from ground-truth masks, results of Deeplab trained by ours.


