
Supplementary Material:
H2O: Two Hands Manipulating Objects for First Person Interaction Recognition

Taein Kwon1, Bugra Tekin2, Jan Stühmer*3, Federica Bogo2, and Marc Pollefeys1,2

1ETH Zürich, 2Microsoft, 3Samsung AI Center, Cambridge

In the supplemental material, we provide further anal-
ysis of our annotation method and evaluate different error
and regularization terms. Next, we explain how the training
images were prepared for object pose estimation. We then
provide the implementation details, evaluation metrics and
further analysis of our method for joint pose estimation and
interaction recognition. We finally present further qualita-
tive results of our method.

S.1. Analysis of the Annotation Method

Influence of different error terms. In Table S1, we an-
alyze the influence of different error terms in our joint loss
function for annotating hand & object poses. To validate
the accuracy of our pose estimates, we annotate the finger-
tips of the hands on 500 images from 5 different views. We
start with the silhouette error term, Ls, since it optimizes
the shape of the hands. We then progressively add to our
loss function, the 2D joint error term (L2D), the 3D joint
error term (L3D), the physical constraint error term (Lphy),
and the 3D mesh surface error term (Lm). We observe that
L2D and L3D significantly increase joint estimation accu-
racy. While Lm improves the estimates for subtle hand
mesh shape and location, the improvement in joint accu-
racy is less pronounced. Lphy improves both the physical
plausibility and the accuracy of pose annotations. Further
smoothing and pose corrections give an additional boost in
accuracy. Overall, all the terms of our optimization function
in Eq. 1 increase the quality of our pose estimates.

θ̂f = argmin
θ

NC∑
c=1

(λ1Ls + λ2L2D) + λ3L3D+

λ4Lp + λ5Lphy + λ6La + λ7Lm

(1)

We provide below additional details for the terms of our
loss function.
Silhouette error term. We use object masks obtained us-
ing a self-trained Mask RCNN [5]. For hands, we estimate

*Work performed while at Microsoft.

hand joint 2D locations in RGB using OpenPose [1], and
use them to initialize the GrabCut algorithm [10]. For each
camera c, we merge the hand mask obtained via GrabCut
with the object mask into a single mask, Mc,h,o, and define
our silhouette error term as:

Ls(θ) =

NV∑
i=1

∥Mc,h,o[j]−Πc(HV (θ)[i])∥

where j = argmin
j

∥Mc,h,o[j]−Πc(HV (θ)[i])∥
(2)

where || · || denotes the 2-norm, Πc(·) gives the 2D pro-
jection of a 3D point onto the image plane, Mc,h,o[j] re-
turns the jth coordinate in the mask of the cth camera, and
HV (θ)[i] returns the ith vertex of the hand mesh. We com-
pute Eq. 2 for each camera.

Physical constraint regularization. To avoid physically
invalid poses (e.g. a finger inside an object), we regularize
our loss function with an additional term as in [4]:

Lphy(θh, θo) = λrLR + (1− λr)LA (3)

where θh are hand pose, θo are object pose parameters, La

is attraction loss and, Lr is repulsion loss. While repulsion
loss penalizes interpenetration of hand and objects, attrac-
tion loss penalizes the cases in which hand vertices are in
the vicinity of the objects but the surfaces are not in con-
tact. In our experiments, we set λr to 0.8.

Hand joint angle limit regularization. In our loss func-
tion, we further penalize unrealistic joint angles as in [3]:

La(θ) =

45∑
k=1

(max(0, θa[k]− θa[k])+

max(θa[k]− θa[k], 0))

(4)

where θa[k] is the kth joint angle, θa is the lower limit of
the angle, and θa is the upper limit of the angle. There exist
in total 45 joint angles. As also observed in [3], the PCA
space of the MANO hand model does not provide sufficient

Terms Ls Ls + L2D Ls + L2D + L3D
Ls + L2D+
L3D + Lm

Ls + L2D+
L3D + Lphy

Ls + L2D + L3D+
Lphy + Lm

Ls + L2D + L3D+
Lphy + Lm + Smoothing

Left Mean (std) 2.87 (±1.48) 1.25 (±1.12) 1.09 (±1.03) 1.08 (±1.02) 0.95 (±0.79) 0.95 (±0.77) 0.82 (±0.43)
Right Mean (std) 3.02 (±1.65) 1.31 (±1.03) 1.11 (±0.98) 1.11 (±1.00) 1.05 (±0.98) 1.04 (±0.94) 0.93 (±0.57)

Table S1: Impact of different error terms in our joint loss function. Errors are given in millimeters (mm). Note that all the experiments
include regularization terms, La and Lp, to avoid unrealistic hand poses.

(a) (b)

(c) (d)

Figure S1: We show some examples of (a) our object images and
their corresponding masks obtained by projecting the object mod-
els, (b) egocentric images and Mask R-CNN results, (c) synthetic
images and the corresponding depth images for training DenseFu-
sion, (d) hand masks obtained by GrabCut [10].

Joint Index Moddle Pinky Ring Thumb
Min Max Min Max Min Max Min Max Min Max

MPC(CMC)
-0.45 0 0 0 -1.5 0.5 -0.5 0.5 0 2
-0.2 0.2 -0.2 0.2 -0.6 0.6 -0.4 0.4 -0.66 0.83
-0 2 0 2 0 2 0 2 0 0.5

PIP(MCP)
-0.3 0.3 -0.3 0.3 -0.3 0.3 -0.3 0.3 -0.3 0.3

0 0 0 0 0 0 0 0 -1 1
0 2 0 2 0 2 0 2 0 1

DIP(IP)
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1.25 0 1.25 0 1.25 0 1.25 0 1

Table S2: Hand joint limits we use in computing La.

details to represent all possible hand poses. Therefore in-
stead we use joint angle space which is more descriptive for
hand poses. We calculate the limits of joint angles heuristi-
cally and give them in Table S2.

Pose prior. In order to regularize hand pose, we model
the distribution of hand poses provided in the MANO
dataset [9] as a multivariate Gaussian. Based on this, we
define a pose prior, Lp, which penalizes the Mahalanobis
distance between both left and right hand pose θ and the
learned Gaussian distributions as in [9].

Lp(θ) =

√
(θ − θ)⊤S−1(θ − θ) (5)

where S is the covariance of the hand pose distribution.

Pose correction. To provide an even higher quality for
our pose annotations, we inspected our dataset after opti-
mization and selected keyframes on our videos to generate
smooth trajectories for hand & object poses. The number of
keyframes we choose is reported in Table S3. We fix small
errors of hand and object poses via interpolation based on
these keyframes.

Implementation details of the annotation method. We
further provide implementation details for our annotation
method below.

Hand joint definition. The MANO [9] model provides hand
joints for 15 locations as shown in Table S2. In order to
map hand joints from the MANO skeleton to OpenPose [1]
skeleton, we reorganize the order of joints and add wrist &
fingertip locations by selecting corresponding points on the
MANO mesh as shown in Fig. S2(b).

(a) (b)

Figure S2: (a) Object 3D models obtained with our method. We
reconstruct textured 3D meshes for 8 different objects. (b) The
map of the OpenPose [1] hand skeleton.

Object Left hand Right hand
keyframes 107,300 88,342 88,264

interpolated frames 7,029 25,987 26,065

Table S3: The number of keyframes and interpolated frames for
the annotations of hands and objects in our dataset.

Object pose estimation network. We use DenseFusion [14]
on multi-view RGBD images to bootstrap our object pose
annotations. To this end, we train on the RGB and depth
images as well as the corresponding segmentation masks,
given in Fig. S1(a). We train the network using ADAM [6]
with a learning rate of 0.0001. We generate synthetic train-
ing images by superimposing object meshes (Fig. S2(a))
with known 6D poses on random backgrounds and cover
a large variety of object poses as shown in Fig. S1(c). We
create the object meshes using BADSLAM [11].
Segmentation masks. To minimize silhouette error term and
train DenseFusion, we require segmentation mask for ob-
jects. To generate segmentation masks, we train Mask R-
CNN [5] with a ResNet-101 backbone. We optimize the
network using SGD with a learning rate of 0.001. We ob-
tain training data for masks by projecting our 3D models
onto the images as shown in Fig. S1 (a). An example result
of Mask R-CNN is shown in Fig. S1 (b). We use randomly
selected COCO [7] images for background augmentation
(Fig. S1 (c)). As discussed in the main paper, we use Grab-
Cut to generate segmentation masks for hands. We provide
an example segmentation mask for hands in Fig. S1 (d).

Layer Type Filters Size/Stride Input Output
0 conv 32 3 × 3 / 1 416 × 416 × 3 416 × 416 × 32
1 max 2 × 2 / 2 416 × 416 × 32 208 × 208 × 32
2 conv 64 3 × 3 / 1 208 × 208 × 32 208 × 208 × 64
3 max 2 × 2 / 2 208 × 208 × 64 104 × 104 × 64
4 conv 128 3 × 3 / 1 104 × 104 × 64 104 × 104 × 128
5 conv 64 1 × 1 / 1 104 × 104 × 128 104 × 104 × 64
6 conv 128 3 × 3 / 1 104 × 104 × 64 104 × 104 × 128
7 max 2 × 2 / 2 104 × 104 × 128 52 × 52 × 128
8 conv 256 3 × 3 / 1 52 × 52 × 128 52 × 52 × 256
9 conv 128 1 × 1 / 1 52 × 52 × 256 52 × 52 × 128
10 conv 256 3 × 3 / 1 52 × 52 × 128 52 × 52 × 256
11 max 2 × 2 / 2 52 × 52 × 256 26 × 26 × 256
12 conv 512 3 × 3 / 1 26 × 26 × 256 26 × 26 × 512
13 conv 256 1 × 1 / 1 26 × 26 × 512 26 × 26 × 256
14 conv 512 3 × 3 / 1 26 × 26 × 256 26 × 26 × 512
15 conv 256 1 × 1 / 1 26 × 26 × 512 26 × 26 × 256
16 conv 512 3 × 3 / 1 26 × 26 × 256 26 × 26 × 512
17 max 2 × 2 / 2 26 × 26 × 512 13 × 13 × 512
18 conv 1024 3 × 3 / 1 13 × 13 × 512 13 × 13 × 1024
19 conv 512 1 × 1 / 1 13 × 13 × 1024 13 × 13 × 512
20 conv 1024 3 × 3 / 1 13 × 13 × 512 13 × 13 × 1024
21 conv 512 1 × 1 / 1 13 × 13 × 1024 13 × 13 × 512
22 conv 1024 3 × 3 / 1 13 × 13 × 512 13 × 13 × 1024
23 conv 1024 3 × 3 / 1 13 × 13 × 1024 13 × 13 × 1024
24 conv 1024 3 × 3 / 1 13 × 13 × 1024 13 × 13 × 1024
25 route 16
26 conv 64 1 × 1 / 1 26 × 26 × 512 26 × 26 × 64
27 reorg / 2 26 × 26 × 64 13 × 13 × 256
28 route 27 24
29 conv 1024 3 × 3 / 1 13 × 13 × 1280 13 × 13 × 1024
30 conv 720 1 × 1 / 1 13 × 13 × 1024 13 × 13 × 10 · (3× Nc+1+Na+No)
31 prediction 13 × 13 × 5 × 2 × (3×Nc+1+Na+No)

Table S4: Network architecture

Example data. We provide in Fig. S6 and Fig. S7 addi-
tional qualitative examples for our ground-truth data, which
demonstrate the high fidelity and accuracy of our dataset.

S.2. Analysis of Pose and Interaction Recognition

Implementation details for pose prediction. We provide
in Table S4 the full details of our network architecture. We
use YOLOv2 [8] as the backbone of our network. The input
to our network model is a 416 × 416 image. At the output
layer, we produce a 3D grid instead of a 2D grid with a
dimension of 13× 13× 5, in width, height and depth axes,
respectively. We set the grid cell size in image dimensions
to 32 × 32 pixels and in depth dimension to 15cm. We
define the confidence of a prediction with a function that is
inversely proportional to the distance of the prediction to the
ground truth as in [13] with its default parameters. We use
ADAM [6] for optimization with a learning rate of 0.0001.
We randomly change the hue, saturation and exposure of
our images to augment our training data.

Implementation details for interaction recognition. As
shown by Eq. 9 in the main paper, the outputs from two 1×1
convolutional layers, Wθ and Wϕ, are multiplied to form a
data dependent adjacency matrix, Sj. This is followed by a
softmax layer to normalize the elements in the matrix.

The dimensionality of the input to our overall TA-GCN
network is 3 × 200 × 51 (for C × T × N). We use 21
keypoints from left & right hand as shown in Fig. S2(b) and
9 keypoints from objects (8 corners and 1 center point of a
3D bounding box). This, in total, results in 51 keypoints fed
as input to the network. For inputs larger than 200 frames,
we randomly sample 200 frames. For inputs smaller than
200 frames, we pad the data by looping the clip.

Figure S3: Some failure cases of our pose prediction method, due
to motion blur, reflection and occlusion.

Avg. val error (mm) Avg. test error (mm)
Left hand joints 22.05 41.45
Right hand joints 30.12 37.21
Object vertices 36.20 47.90

Table S5: Average errors (in mm) for hand & object estimates
using our pose prediction approach.

Each TA-GCN block takes a C × T ×N input which is
fed into 2D convolutional layer following batch normaliza-
tion and a ReLu layer. Another batch normalization layer
and a dropout layer are placed after the 2D convolutional
layer. A skip connection is added to each TA-GCN block
to learn more stable features, similarly with 2s-AGCN [12].
We set the size of the vertex neighborhood defined by the
convolutional kernel as 2. The convolution for the temporal
dimension is the same as ST-GCN [15].

To build our TA-GCN, we stack 10 TA-GCN blocks.
The consecutive numbers of output channels for TA-GCN
blocks are 64, 64, 64, 64, 128, 128, 128, 256, 256, and 256.
A fully connected layer following average pooling is used
as the last layer to predict the class of action labels. We
train the network using SGD with a momentum of 0.9. We
set the dropout rate as 0.5 and the batch size as 16. The
learning rate starts from 0.005 and is divided by 10 at the
150th, 200th and 250th epoch.

Evaluation metrics. In our paper, we use the percentage
of correctly estimated poses to assess the accuracy of pose
estimation. Specifically, for hand pose estimation, we use
the 3D PCK metric as in [13] and consider a pose estimate
to be correct when the mean distance between the predicted
and ground-truth joint positions is less than a certain thresh-
old without a rigid alignment. When using the percentage
of correct poses to evaluate 6D object pose estimation ac-

Figure S4: Confusion matrix for interaction recognition .

curacy, we take a pose estimate to be correct if the 2D pro-
jection error or the average 3D distance of model vertices is
less than a certain threshold (the latter being also referred to
as the ADD metric).

Confusion matrix for interaction recognition. We show
in Fig. S4 the confusion matrix for interaction recognition.
As shown by the strong diagonal of the confusion matrix,
our model is able to distinguish between different classes
achieving a high accuracy.

Mean errors for hand & object keypoint prediction.
We further provide average keypoint prediction errors for
hands and objects in Euclidean distance in Table S5. Key-
points are selected as 21 joint locations for hands and 21
points on the bounding box (1 center point, 8 corner points,
12 midpoints of the edges) for the object. We demonstrate
that, with a low error margin, our method constitutes a
strong baseline for joint pose estimation of two hands in-
teracting with objects. We provide further qualitative pose
estimation results in Fig. S8.

References
[1] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and

Yaser Sheikh. OpenPose: Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields. PAMI, 43(1):172–186,
2019. 1, 2

[2] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul
Baek, and Tae-Kyun Kim. First-person hand action bench-
mark with rgb-d videos and 3d hand pose annotations. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 409–419, 2018. 4

[3] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. HOnnotate: A Method for 3D Annotation of
Hand and Object Poses. In CVPR, 2020. 1

[4] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J Black, Ivan Laptev, and Cordelia Schmid.

Figure S5: Inter-dataset examples when we train both hand poses
on our dataset with our method and validate on FPHA [2]. Note
that the offsets are observed due to different camera parameters
across datasets. Polluted images by the magnetic sensors on the
FPHA dataset detriment generalization for right hand poses.

Learning joint reconstruction of hands and manipulated ob-
jects. In CVPR, 2019. 1

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 1, 2

[6] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In ICLR, 2015. 2, 3

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
ECCV, 2014. 2

[8] J. Redmon and A. Farhadi. YOLO9000: Better, Faster,
Stronger. In CVPR, 2017. 3

[9] Javier Romero, Dimitrios Tzionas, and Michael J Black. Em-
bodied Hands: Modeling and Capturing Hands and Bodies
Together. ACM Transactions on Graphics (ToG), 36(6):245,
2017. 2

[10] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
“GrabCut” - Interactive Foreground Extraction using Iter-
ated Graph Cuts. ACM transactions on graphics (TOG),
23(3):309–314, 2004. 1, 2

[11] Thomas Schops, Torsten Sattler, and Marc Pollefeys. BAD
SLAM: Bundle Adjusted Direct RGB-D SLAM. In CVPR,
2019. 2

[12] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu.
Two-stream Adaptive Graph Convolutional Networks for
Skeleton-Based Action Recognition. In CVPR, 2019. 3

[13] Bugra Tekin, Federica Bogo, and Marc Pollefeys. H+O: Uni-
fied Egocentric Recognition of 3D Hand-Object Poses and
Interactions. In CVPR, 2019. 3

[14] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́n,
Cewu Lu, Li Fei-Fei, and Silvio Savarese. Densefusion: 6d
object pose estimation by iterative dense fusion. In CVPR,
2019. 2

[15] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In AAAI, 2018. 3

Figure S6: Some examples of ground-truth data of our dataset for hand & object poses on five different camera views.

Figure S7: Some examples of ground-truth data of our dataset for hand & object poses on five different camera views.

Figure S8: Qualitative results of our method that jointly estimates the poses for two hands & objects, along with action and object classes.

