
Visual Graph Memory with Unsupervised Representation for Visual Navigation:
Supplementary Material

Obin Kwon Nuri Kim† Yunho Choi† Hwiyeon Yoo† Jeongho Park† Songhwai Oh

Department of Electrical and Computer Engineering, ASRI, Seoul National University *

{firstname.lastname}@rllab.snu.ac.kr, songhwai@snu.ac.kr

1. Introduction

We provide additional analyses on the proposed method
in this supplementary material. Section 2 presents ablation
study results about network architecture, auxiliary tasks,
representation learning, scalability and dataset sizes. We
also provide experimental results on coverage task. Addi-
tional qualitative Results of the proposed VGM are pre-
sented in Section 4. We present examples of the generated
graphs using the VGM and comparisons with other base-
lines. Discussion about real-world implementation is pre-
sented in Section 3. Furthermore, examples of navigation
episodes and failed cases are also provided in Section 4. In
Section 5, we provide the implementation details of the pro-
posed method and other baselines.

2. Ablation Study

Network Architecture. The navigation module consists
of a single encoder (Fenc) and two decoders (Fdec1, Fdec2).
We ablated each element in the navigation module, and the
results are shown in Table 1. All models are tested with
hard-level episodes (5m ∼ 10m).

First, we examined the influence of the Fenc in the en-
coder part. Comparing the ‘No Encoder’ model and GCN
models, we can validate that the memory encoder makes
useful information by processing VGM. The success rate
slightly increases from K=1 to K=3, but larger K does
not yield a considerable improvement. As K increases, the
neighborhood from which a single node can aggregate in-
formation gets larger. For example, if K = 5, a single node
aggregates the embeddings from the neighborhoods within
5-hop distance. As K increases, the amount of information
gathered to update a single node would increase, which may
dilute the local feature of the node.

*This work was supported by Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2019-0-01190, [SW Star Lab] Robot Learning:
Efficient, Safe, and Socially-Acceptable Machine Learning). † These au-
thors contributed equally to this work.

Ablation SR SPL

Encoder

No Encoder 0.562 0.436
GCN K = 1 0.588 0.468
GCN K = 3 0.609 0.456
GCN K = 5 0.576 0.452

Decoder
w/o Fdec1 (w/o ct) 0.581 0.459

w/o Fdec2 (w/o ctarget) 0.551 0.427
shared decoder 0.585 0.433

Navigation w/o rt 0.568 0.455
w/o Fvis 0.000 0.000

Proposed Model 0.609 0.456

Table 1: Network architecture ablation results. We ab-
lated each element in the navigation module of the pro-
posed navigation framework. (SR: success rate, SPL: suc-
cess weighted by path length)

For the decoder part, we ablated each decoder function
(Fdec1, Fdec2) to see the effect of the context vectors on the
navigation agent. ‘w/o Fdec1’ model uses embedding vector
rt from Fvis instead of the context vector ct. The difference
between rt and ct is that ct includes aggregated informa-
tion from the memory and rt only contains the image infor-
mation from the current observation. Similarly, ‘w/o Fdec2’
model uses rtarget instead of ctarget. ‘Shared Fdec’ model
uses a single decoder network Fdec for both ct, ctarget.
Comparing the results of ‘w/o Fdec1’, ‘w/o Fdec2’ models
and the proposed model, we can see that both context vec-
tors are helpful to achieve better navigation performance.
We find that the influence of ctarget (Fdec2) is larger than ct
(Fdec1). The aggregated information about the target obser-
vation is more useful than the one about the current obser-
vation.

We further ablated the elements in the navigation mod-
ule other than the memory processor. The navigation mod-
ule has a CNN Fvis, which encodes the current and target
observation image into the embedding vectors (rt, rtarget).
This network is different from the Floc in the Memory Mod-
ule. We replaced the Fvis with Floc for ‘w/o Fvis’ model to
use et and etarget instead of rt and rtarget. The context vec-

Ablation Learning SR SPL
w/o Auxiliary Tasks IL 0.48 0.34

with Superivsed Localization IL 0.56 0.42
Proposed Model IL 0.53 0.39

w/o Auxiliary Tasks IL + RL 0.59 0.46
with Superivsed Localization IL + RL 0.61 0.50

Proposed Model IL + RL 0.61 0.46

Table 2: Auxiliary tasks and representation learning ab-
lation results. (SR: success rate, SPL: success weighted by
path length)

tors would be the aggregated information from the et and
etarget as follows:

c′t = Fdec1(et,M)

c′target = Fdec2(etargetf,M).
(1)

As rt is not given from Fvis, the navigation policy can only
use the context vectors. We find that the model which does
not have Fvis failed to learn a goal-searching policy (w/o
Fvis in Table 1). We also removed only rt from the naviga-
tion policy inputs to find out whether the reason for this fail-
ure is rt. ‘w/o rt’ model in Table 1 has Fvis, and it uses the
same context vectors as the original model, except that the
navigation policy only uses the context vectors (ct, ctarget).
We can see that ‘w/o rt’ model is able to learn the goal-
searching policy well, even though the navigation policy
can not directly see the embedding vector of the current
observation. These ablation results show that Fvis and Floc

output very different embeddings even though they have the
same architecture and same inputs. With the Floc, the pro-
posed navigation framework can localize and build a topo-
logical map about the environment. However, without the
additional network Fvis, it failed to learn how to search for
the goal in the environment or when to take a stop action.
The embeddings from Floc have useful information for lo-
calizing and mapping, but it seems that these embeddings
do not contain navigation-related information.

Auxiliary Tasks. We provide the experiment results with-
out the auxiliary losses in Table 2. The auxiliary tasks im-
prove the success rate and SPL by a large margin when the
models are only trained using imitation learning (about 10%
in success rate, 14% in SPL). However, after the models are
finetuned with reinforcement learning, the effect of the aux-
iliary losses becomes smaller (about 3% in success rate). We
believe that the reason comes from the limited dataset of im-
itation learning. The model is trained with a limited number
of demonstrations, so that the auxiliary tasks can be help-
ful to leverage the limited dataset. The auxiliary tasks are
designed to teach the agent an ability to determine 1) the
appropriate distance to take a stop action, and 2) whether

the agent has passed the current location. When the model
is training with reinforcement learning, the agent can learn
to determine its state relative to the goal in the environment.
With a number of trials and errors, the model without aux-
iliary tasks also can learn such abilities implicitly by the
given reward.

Representation Learning. We also trained Floc using su-
pervised learning. We labeled the visibility and geodesic
distance between each observation pairs using the 3d mesh
of the simulator environment. If an observation pair is vis-
ible from each other and the geodesic distance is smaller
than 3m, the label is set to 1. We trained Floc to classify the
observation pairs. ‘with Supervised Localiztion’ model in
Table 2 is the navigation agent trained with supervised Floc.
We can see that supervised localization further brings per-
formance improvement from the unsupervised one. How-
ever, this improvement also becomes smaller after the mod-
els are finetuned with reinforcement learning. When the
agent is only trained with imitation learning, supervised
Floc can provide better information than the unsupervised
one. However, after the agent sufficiently interacts with the
environment, the agent with unsupervised localization can
learn to navigate well as the one with supervised localiza-
tion.

Scalability. During the evaluation, the agent finds the tar-
get location creating 6.6 nodes on average, and the max-
imum number of generated nodes is 28. Even though the
proposed method can summarize the environment into a
compact-sized graph and finds the target efficiently, the
number of nodes will increase as the agent keeps exploring
the environment.

We limited the maximum number of nodes to a fixed
number N to test its scalability in large environments. In
this ablation test, the RL-finetuned agent is tested on 27
large environments (more than 100m2) with hard level
episodes. These environments are not included in the train-
ing or validation splits from [9], and they are larger than the
majority of the validation environments. When a new node
is added and the number of nodes exceeds N , we erase the
oldest node from the VGM. Table 3 shows the result. We
also tested the baselines in the same environments. The lim-
itation on the memory size decreases the success rate, but
even with a fixed size of memory, the agent still can show
better performance than other baselines. Note that we did
not limit the memory size of the baselines. The Exp4nav
model uses a whole metric map, and SMT collects all ob-
servations as a memory. Neural Planner and SPTM models
use unlimited size of graph.

Dataset with limited size. We tested our method with
limited dataset. Compared to the previous graph-based nav-

Baselines SR SPL Memory Limit SR SPL
Exp4nav 0.414 0.348 VGM (Nt ≤ 1) 0.482 0.299

SMT 0.489 0.356 VGM (Nt ≤ 5) 0.526 0.390
Neural Planner 0.184 0.091 VGM (Nt ≤ 15) 0.541 0.395

SPTM 0.121 0.079 VGM (Nt ≤ ∞) 0.550 0.398

Table 3: The evaluation results in large environments.
We tested the proposed navigation algorithm with different
memory sizes. Nt ≤ N means that maximum number of
nodes are limited to N . Other baselines are also tested in
the same environments.

Large All
Covered Ratio t = 500 t = 1000 t = 500 t = 1000
Exp4Nav [3] 0.66 0.71 0.76 0.79

SMT [4] 0.74 0.78 0.84 0.86
ANS [1] 0.83 0.89 0.91 0.95

VGM (ours) 0.82 0.83 0.87 0.89

Table 4: Comparison and evaluation results of the baselines and
our model.

igation method NTS[2], ours has an end-to-end structure
which can utilize more data by training with RL. When our
method is trained with a similar number of data as NTS
(300 images per scene, only IL with 200 episodes), VGM
performance drops (RL 0.61, IL 0.53 → IL 0.49) on the
hard difficulty level.

Coverage Task We have also tested the proposed naviga-
tion framework on the coverage task. The experiment re-
sults are shown in Figure 4. The maximum time step of
single episode is set to 1,000 and the table also shows the
covered ratio with half of an episode (t=500) to see how
fast each method can cover the environment. We first tested
each method in large environments (with an area of 55m2

or higher) and extended to all environments in the valida-
tion split. We can see that the proposed method can quickly
cover a large environment similar to the metric map-based
methods (ANS, Exp4Nav). However, since the VGM does
not use dense information such as the metric map (ANS,
Exp4Nav) or all observations (SMT), the proposed method
lacks meticulous coverage so the final covered ratio is lower
than the ANS. The ANS model can densely cover the envi-
ronment but requires relatively accurate geometric informa-
tion and a high computational cost and memory to build
a metric map. In contrast, our method sparsely covers the
environment to build concise representation of the environ-
ment and it is more robust to environmental errors, such as
pose estimation errors. Considering the trade-off, one can
choose the memory model in accordance with the desired
coverage performance.

3. Real-world Experiment

We think the main difficulty for the real-world experi-
ment is RL because RL should be conducted in a strictly
controlled environment for safety. However, as the proposed
model shows acceptable performance with IL (Table 2), we
are preparing to implement the IL model and study how
to bring the RL features to the real world. On the other
hand, recent papers [1, 7] have reported that direct sim-to-
real transfer from Habitat Simulator is possible due to its
photo-realistic feature. Therefore, we are also considering
the direct implementation of the simulator-trained policy in
the real world.

4. Qualitative VGM Visualization

Generated graph. Examples of generated graphs using
VGM are shown in Figure 1a. In each example, each graph
is generated from the same random exploration data. In Fig-
ure 1a, the trajectory of the agent is shown in the first col-
umn. The distance-based graph method uses the position of
the agent. If the agent is far from all nodes in the graph,
this method adds a new node. The Supervised Localiza-
tion method builds a graph with supervised Floc, which is
trained in the ablation study (Section 2).

We can see that generated graphs are different across
different methods. Comparing the Supervised Localization
and the (unsupervised) VGM, the VGM can build a graph
selecting the novel location in the environment as good as
the supervised Floc. The distance-based method only fo-
cuses on the distances between nodes. Each node in the
graph is selected by comparing distances with previous
nodes, not by considering how each location is novel to
the previous nodes. The node distances of the VGM graph
are different according to locations because VGM builds a
graph based on similarities between observations. When the
agent navigates through the corridor or doorway (pink area
in Figure 1a), the appearance of observations will change
abruptly as the agent enters a new room or encounter new
furniture. In this case, new nodes will be densely added and
the distances between nodes will be small. In contrast, when
the agent moves in a large hallway (blue area in Figure 1a),
the appearance of observations will not change much. So
the distance between nodes becomes larger. In Figure 1b,
we marked the positions of nodes generated through sev-
eral navigation episodes in a single environment. We can
see that a number of nodes are concentrated around a nar-
row corridor or doorway. We also visualized corresponding
image observations of nodes to see which location is added
as a node, in Figure 4.

We can adjust the distance between nodes by changing
the value of the similarity threshold sth. The visualizations
of generated graphs according to various sth are shown in
Figure 1c. As we have stated in the paper, small sth gener-

ates a sparse graph since small sth associates a larger region
as a neighborhood. A new node is added only when the new
observation has a smaller similarity value than sth.

Navigation episodes. We present further examples of
navigation episodes in Figure 2a. The agent can find the tar-
get location after exploring other places. A video of these
examples and comparisons with other baselines are pro-
vided in the supplementary video.

We also present examples of failed episodes in Figure 2b.
The main reasons for the failure can be categorized into four
types; Not Close Enough, False Stop, Stuck on Obstacles,
and Time over. The agent often takes a stop action around
the target but not close enough to be regarded as success
(Not Close Enough). This type of failure happens in 14.4%
of all failed episodes. The agent sometimes takes a stop ac-
tion in the wrong location which looks similar to the target
location (False Stop, 25.5%). Furthermore, the agent often
gets stuck on obstacles (Stuck on Obstacles, 12.3%). Some
obstacles are invisible to the agent due to the height of the
camera and low-quality of 3D mesh. The most frequent rea-
son for the failure is Time Over (44.6%), in which the agent
had not found the target area after 500 steps of the navi-
gation. The agent rarely overlooks the target location when
it encounters the target area during the navigation. Most of
the Time Over cases are when the agent had not sufficiently
explored the environment to find the target area in a lim-
ited time. Adding an exploration reward in the reinforce-
ment learning stage might address these failure cases.

5. Implementation Details
5.1. Network Architecture

An image observation is a panoramic RGBD image with
64 × 252 × 4 size. The image encoders Floc and Fvis are
both based on ResNet-18 [6]. They take an image observa-
tion and produce a 512-dimension vector. Fenc is a graph
convolutional network, which uses 512-dimension vectors
from the outputs of Floc and Fvis. Fenc consists of K = 3
graph convolutional layers. Fdec is multi-head attention net-
work, which has J = 4 heads.

5.2. Training details

Imitation learning. We collected 200 trajectories in each
environment for training. As we want the agent to learn how
to use VGM, demonstrations need to contain sufficient in-
formation to build a nontrivial VGM. We have collected
demonstrations from the oracle agent, which sequentially
searches for multiple targets in order. In the learning stage,
the agent builds a VGM from the start of a demonstration.
This memory remains during the whole demonstration se-
quence, even when the target changes. As the oracle agent in
the demonstration data sufficiently roamed the environment

to build a decent size of memory, we intended the agent to
learn how to use the built memory for inferring the proper
action to find the targets. Using this kind of demonstration,
we could derive successful behavior of the agent, which is
better than the one only trained with single-target search
demonstration. Each target is separated from 3m to 10m,
and up to 5 targets are sampled at the start of each trajec-
tory. At each training iteration, we sampled a mini-batch of
16 training trajectories, and update the network parameters
using the Adam optimizer with learning rate 0.0001, weight
decay 0.00001. Early stopping is used for all imitation train-
ing models.

Reinforcement learning. In the reinforcement learning
stage, we used Proximal Policy Optimization (PPO) [11].
Hyperparameter settings are shown in Table 5. All the end-
to-end policy baselines (CNN+LSTM, Exp4Nav and SMT)
and our proposed model are first trained using imitation
learning and finetuned 10M frames in the reinforcement
learning stage. ANS model is also trained with 10M frames.
Handcrafted graph baseline algorithms (Neural Planner,
SPTM) need local policies to navigate between the nodes.
For the Neural Planner, we used the publicly released pre-
trained point-goal navigation model from [12], which shows
0.944 SPL in the Gibson dataset. For the SPTM, we uti-
lized the RL-finetuned CNN + LSTM model as the image-
based local navigation policy. For the exploration policy
of the graph baselines, we used the VGM coverage model
as it shows better performance than the basic CNN+LSTM
model.

Representation learning. The image encoder Floc in
memory update module is trained using prototypical con-
trastive learning (PCL) [8]. We sampled 10,000 images for
each environment. For each observation image oi, Floc pro-
duces a feature embedding vector ei = Floc(oi). The loss
function of PCL has the similar form as InfoNCE [5, 10],
which is formulated as:

LInfoNCE(ei) = − log
exp(ei · e′i/τ)∑r
j=0 exp(ei · e′j/τ)

, (2)

where e′i is the positive embedding of ei, e′j includes r neg-
ative embeddings, and τ is a temperature hyperparameter. A
positive embedding is from an augmented version of oi, and
negative embeddings are from different images. We aug-
ment the panoramic image by vertically splitting the image
into 12 patches and changing the order of the 12 patches.
e.g., {0, 1, 2,10, 11} −→ {3, 4, 5, ...11, 0, 1, 2}

PCL has an additional contrastive loss using prototypes
of image embeddings. PCL iteratively conducts two steps
which are similar to the expectation maximization (EM) al-
gorithm. In the first step, we conduct k-means clustering
for the image embeddings from the training dataset. Then,

(a)
(b)

(c)

Figure 1: (a) Examples of generated graphs. We compare the graphs generated using various methods. The first column
shows trajectories of an agent in the map. Each graph is generated using the trajectory shown in the first column. Nodes
are densely generated in a corridor or doorway (pink area) because the appearance of observations changes abruptly as the
agent enters a new room or encounter new furniture. In contrast, nodes are generated sparsely in a large hallway (blue area)
because the appearance of observations does not change much as the agent moves around. (b) Visualization of all generated
nodes. We collected several navigation episodes in each environment, and visualized the generated nodes in the map. Pink
areas denote the concentrated region of generated nodes. (c) Generated graphs across various values of the similarity
threshold sth. Small sth generates a sparse graph since small sth associate a larger region as a neighborhood.

(a)

(b)

Figure 2: (a) More examples of a target searching episode. Note that these maps are for visualization and the agent is not
given any metric maps. Each node in the map denotes the node elements which is added throughout the path of the agent.
Additionally, the attention scores of nodes are shown as blue circles and red stars. The blue circle means the attention score
in the context of current observation in Fdec1. The red star means the attention score in the context of the goal observation
in Fdec2. More vivid the color, the higher the attention score. Best shown in color. (b) Examples of failed episodes. Main
reasons for the failure can be categorized into four;Not Close Enough, False Stop, Stuck on Obstacles, Time over. The
trajectories of the agent and the observations for each category are shown in the figure.

paramter value
batch size 128
buffer size 256*4

rollout step. 256
epoch 2

ϵ (clip ratio) 0.2
learning rate 0.00001

value loss coefficient(c1) 0.5
entropy coefficient (c2) 0.3

gamma (generalized advantage estimation) 0.99
tau (generalized advantage estimation) 0.95

Table 5: Hyperparameters for PPO training.

the centroids of k clusters are set as prototypes {ci}ki=1. We
cluster the embeddings M = 3 times for different num-
bers of k to encourage various resolutions of clusters. In the
second step, the network parameters are updated in the di-
rection that each ei gets closer to its own cluster cs. The
illustrated overview of the second step is shown in Figure
3a The prototypical contrastive loss is formulated as :

Lcluster(ei) = − 1

M

M∑
m=1

log
exp(ei · ckm

s /ϕkm
s)∑r

j=0 exp(ei · ckm
j /ϕkm

j)
, (3)

where cs is the prototype of the cluster which oi belongs
to, {cj} includes r negative prototypes from other clus-
ters and cs. The superscript km means that each cluster is
from km-means clustering. In our setting, we use km ∈
{2500, 5000, 10000}. In addition, PCL uses estimated con-
centrated level ϕs as a temperature hyperparameter. ϕs is
calculated as the variance of embeddings in each cluster.
The total loss of PCL is set as follows:

LProtoNCE =

n∑
i=1

LInfoNCE(ei) + Lcluster(ei) (4)

where n is the total number of images in a mini-batch. We
used τ in LInfoNCE(ei) as 0.2, the batch size is 1024, and the
learning rate is 0.3.

We visualize the learned representation space of the
trained Floc via t-SNE in Figure 3b. We collected the fea-
tures of the validation image set using Floc. The observa-
tion images in the validation image set are sampled from
the unseen environment. Each point in the top-down map
represents the feature embedding of the observation in the
specific location. We can see that the observations from the
similar area has similar representations while each area is
distinct from other areas. We also clustered features to see
the distribution of the clusters that PCL learned. Each col-
ored area in the map denotes that the observation images in
the region are assigned to the same cluster (see Figure 3b).
We can see that the observations from the similar area are
assigned to same cluster, and they are distinct from the other
clusters.

References
[1] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,

Abhinav Gupta, and Ruslan Salakhutdinov. Learning To Ex-
plore Using Active Neural SLAM. In International Confer-
ence on Learning Representations (ICLR), 2020. 3

[2] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural Topological SLAM for
Visual Navigation. In IEEE Conference on Computure Vi-
sion and Pattern Recognition (CVPR), 2020. 3

[3] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning
Exploration Policies for Navigation. In International Con-
ference on Learning Representations (ICLR), 2019. 3

[4] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio
Savarese. Scene Memory Transformer for Embodied Agents
in Long-Horizon Tasks. IEEE Conference on Computure Vi-
sion and Pattern Recognition (CVPR), 2019. 3

[5] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum Contrast for Unsupervised Visual Rep-
resentation Learning. In IEEE Conference on Computure Vi-
sion and Pattern Recognition (CVPR), 2020. 4

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In IEEE
Conference on Computure Vision and Pattern Recognition
(CVPR), 2016. 4

[7] Abhishek Kadian and et al. Sim2real predictivity: Does eval-
uation in simulation predict real-world performance? IEEE
Robotics and Automation Letters (RA-L), 2020. 3

[8] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and
Steven C.H. Hoi. Prototypical Contrastive Learning of Un-
supervised Representations. In International Conference on
Learning Representations (ICLR), 2021. 4

[9] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied AI Research. In
IEEE International Conference on Computer Vision (ICCV),
2019. 2

[10] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Represen-
tation Learning with Contrastive Predictive Coding. arXiv
preprint arXiv:1807.03748, 2018. 4

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal Policy Optimization Algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 4

[12] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.
DD-PPO: Learning near-perfect pointgoal navigators from
2.5 billion frames. International Conference on Learning
Representations (ICLR), 2020. 4

(a) Overview of the PCL (b) Visualization of the learned representation space

Figure 3: (a) Overview of the PCL In PCL, an image encoder is trained to encode an image similar to the prototype of its own cluster
while the prototypes of other clusters are placed further. (b) Visualization of the learned representation space Each point in the top-down
map represents the observation taken in the location. We visualize the representation space via t-SNE plot. We also clustered the features
and visualized them on the map. Each colored area in the map denotes that the observation images in the area are assigned to the same
cluster. Best shown in color.

Fi
gu

re
4:

C
or

re
sp

on
di

ng
O

bs
er

va
tio

ns
of

G
en

er
at

ed
N

od
es

.T
he

gr
ap

h
is

ge
ne

ra
te

d
fr

om
ra

nd
om

ex
pl

or
at

io
n

da
ta

.
W

e
vi

su
al

iz
ed

co
rr

es
po

nd
in

g
im

ag
e

ob
se

rv
at

io
n

on
ea

ch
no

de
.E

ve
n

w
ith

th
e

un
su

pe
rv

is
ed

re
pr

es
en

ta
tio

n,
th

e
ge

ne
ra

te
d

gr
ap

h
w

el
ls

um
m

ar
iz

ed
th

e
en

vi
ro

nm
en

ti
nt

o
a

co
m

pa
ct

si
ze

.

