
APPENDIX

In this appendix, we provide the proof for Theorem 1 in
Section A, and provide more experiment results to demon-
strate the outstanding interpretation performance of RI in
Sections B-G.

A. The Proof of Theorem 1

We first rewrite Equation (3) as

min
P (x)✓Q

|R|� |P (x) \R| (9a)

s.t. |D(x)|� |P (x) \D(x)| � |D(x)|� �, (9b)

where |R| and |D(x)| are the constant cardinalities of R and
D(x), respectively.

Then, we prove the problem of Equation (9) is an SCSC
problem [28] by showing

|R|� |P (x) \R| (10)

and
|D(x)|� |P (x) \D(x)| (11)

are submodular functions with respect to P (x) ✓ Q.
Denote by P = P (x), and by f(P ) = |R|�|P \R|. We

prove f(P ) is a submodular function with respect to P ✓
Q by showing that, for any two sets of linear boundaries,
denoted by P ✓ Q and T ✓ Q, if P ✓ T , then

f(P [ {h})� f(P ) � f(T [ {h})� f(T ) (12)

holds for any linear boundary h 2 Q \ T .
Recall that the linear boundaries in P defines a convex

polytope, and |P \R| is the number of images in R that are
covered by P . Thus, f(P ) = |R| � |P \R| is the number
of images in R that are not covered by P .

If we add a new linear boundary h 2 Q \ T to P , some
images covered by P may not be covered by the new convex
polytope defined by P [ {h}. We say these images are
removed by h from P .

The left side of Equation (12) is exactly the number of
the images removed by h from P . Similarly, the right side
of Equation (12) is the number of the images removed by h
from T .

Since P ✓ T , the set of images covered by P contains
the set of images covered by T . Therefore, the number of
images removed by h from P will be no smaller than the
number of images removed by h from T . As a result, Equa-
tion (12) holds, which means |R|�|P (x) \R| is a submod-
ular function with respect to P (x).

We can prove |D(x)| � |P (x) \D(x)| is a submodular
function with respect to P (x) in the same way. This con-
cludes the theorem.

B. Case Study

We present a case study on the FOOD dataset in Fig-
ure 3. The experiment setting is the same as the case study
discussed in Section 6.3.
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Figure 3. A case study on the FOOD dataset. The first row shows
the input image and the similar reference images found by RI. The
third row shows the same input image and the similar reference
images found by the baseline methods. The other rows are the
interpretations of all the methods. The numbers under the images
in the first and third row are the prediction scores of the ‘non-food’
class. The numbers under the interpretations are the prediction
scores of ‘non-food’ on the masked images produced by keeping
20% most important pixels. A higher prediction score means a
better interpretation.

As shown in the first row of Figure 3, the input image and
the similar reference images found by RI are all predicted
as ‘non-food’ with high prediction scores.

All these images contain human, which indicates the
common decision logic to predict these images as ‘non-
food’ is that they contain human bodies instead of food.

We can see from the second row of Figure 3 that this
common decision logic is accurately identified by RI. The
interpretation computed by RI from the input image cor-
rectly identifies the human bodies in the input image and
the similar reference images.

These results demonstrate the superior performance of
RI in finding representative interpretations that reveal the
common decision logic on similar images.

The third row of Figure 3 shows the same input image as
the first row, and the similar reference images found by the



baseline methods. These images are perceived as concep-
tually similar because they all contain large areas of natural
scene, thus the common decision logic to predict them as
‘non-food’ should be the natural scene.

However, we can see from the 4th, 5th and 6th rows that
the interpretations produced by Grad-CAM, Grad-CAM++
and Score-CAM all identify the human bodies instead of the
natural scene in the input image, but the interpretations on
the similar reference images all identify natural scene.

The inconsistency between the interpretations on the in-
put image and the similar reference images demonstrate that
Grad-CAM, Grad-CAM++ and Score-CAM cannot pro-
duce good representative interpretations to reveal the com-
mon decision logic of a CNN in making predictions on a
large number of similar images.

We can also see from the last row of Figure 3 that ACE
did a fairly good job in consistently identifying the image
patches of natural scene in the input image and the refer-
ence images. However, as demonstrated by the quantitative
experimental results in Section 6.4 and Appendix C, the in-
terpretation quality of ACE is significantly lower than RI
due to the high sensitivity of image segmentation and clus-
tering.

C. Representativeness on Reference Images

In this section, we use the reference dataset to quantita-
tively evaluate how well can an interpretation generated on
an input image be reused to interpret predictions made on
similar reference images.

We randomly sample 1,000 images from the reference
dataset as the input images to generate 1,000 interpretations
for each method. For each interpretation, we use AD (7)
and AI (8) again for evaluation, except this time we take S
to be the 1,000 most similar reference images.

For each of RI, Grad-CAM, Grad-CAM++ and Score-
CAM, we use every input image to generate an interpreta-
tion. Since ACE requires a set of images to produce one
interpretation, we first use an input image to find 49 near-
est reference images to the input image in the space of ⌦.
Then, we use the 50 images including the input image and
the 49 nearest images as the input to ACE to generate one
interpretation for the input image.

For each of the baseline methods, to evaluate the repre-
sentativeness of an interpretation computed from an input
image x, we first find the top-K nearest reference images to
x in the space of ⌦ using Euclidean distance, and then use
these images as the set of similar images S to compute the
AD and AI of the interpretation.

For RI, we use the set of top-K similar images ranked
by semantic distance to compute the AD and AI of each
interpretation.

Figure 4 shows the mean Average Drop (mAD) and the
mean Average Increase (mAI) of the 1,000 interpretations
generated by each of the methods for different values of K.

Here, K = 1 means the set of similar images S con-
tains only the input image x, because x is the most similar
to itself. In this case, the mAD and mAI performance are
evaluated on the input images only.

(a) mAD on ASIRRA (b) mAI on ASIRRA

(c) mAD on GC (d) mAI on GC

(e) mAD on RO (f) mAI on RO

(g) mAD on FOOD (h) mAI on FOOD

Figure 4. The mean Average Drop (mAD) and mean Average In-
crease (mAI) performance of all the methods.

We can see that RI achieves the best mAD performance
on all the datasets, and it also achieves the best mAI perfor-
mance on most of the datasets. These results demonstrate
the superior performance of RI in producing representative
interpretations.

The mAI performance of RI is worse than the other
methods in Figure 4(h), because a large proportion of the
similar images found by RI on the FOOD dataset has a high
prediction score close to 100%. Thus, it is very difficult to
further increase the score by masking the images based on
interpretations.

Actually, due to the high quality of the representative in-
terpretations produced by RI, most of the masked images
produced by RI only have a slight drop of prediction scores.
Therefore, as shown in Figure 4(g), RI still achieves a much
better mAD performance than all the baseline methods on
the FOOD dataset.

We can also see in Figures 4(a), 4(e) and 4(g) that the
mAD of Score-CAM is slightly better than RI when K = 1.
This is because Score-CAM focuses on maximizing the pre-
diction scores of the masked input image, thus it achieves a
better mAD on the input image. However, RI focuses on
finding the most representative interpretation for both the
input image and a large number of similar images. There-



Datasets ACU-GT of RI (%) ACU-GT of F (%) ACU-MD of RI (%) ACU-MD of F (%) CVR of RI (%) CVR of F (%)

ASIRRA Ref. 99.85± 0.04 100.00 99.85± 0.04 100.00 99.83± 0.05 100.00
Unseen 98.38± 0.12 98.80 99.28± 0.08 100.00 99.84± 0.14 100.00

GC Ref. 96.25± 0.09 95.34 99.63± 0.05 100.00 97.95± 0.14 100.00
Unseen 94.95± 0.13 94.00 98.98± 0.20 100.00 98.18± 0.39 100.00

RO Ref. 98.63± 0.08 99.58 98.98± 0.08 100.00 99.69± 0.05 100.00
Unseen 98.14± 0.17 97.50 98.44± 0.10 100.00 99.88± 0.15 100.00

FOOD Ref. 99.84± 0.06 100.00 99.84± 0.06 100.00 99.45± 0.11 100.00
Unseen 97.87± 0.13 98.50 98.54± 0.10 100.00 99.68± 0.21 100.00

Table 2. The ACU-GT, ACU-MD and CVR performance of RI and the CNN model F . We run RI for 5 independent times and compute the
mean and standard deviation for each of ACU-GT, ACU-MD and CVR. The ACU-GT of F is the prediction accuracy of the CNN model
F with respect to the ground truth labels. The ACU-MD of F is always 100% because the prediction results of F are used as the ground
truth to compute ACU-MD. The CVR of F is always 100% because F is applicable to predicting the labels of all the images. Ref. and
Unseen represents the reference dataset and the unseen dataset, respectively. We set |V | = 40 for RO, and |V | = 20 for the other datasets.

fore, when K = 1, RI achieves a comparable performance
with Score-CAM on the input images; and when K > 1, RI
achieves a much better performance than Score-CAM on
the similar images.

D. Prediction Accuracy and Coverage of the

Decision Regions Produced by RI

In this section, we evaluate the quality of the interpre-
tations of RI by analyzing the prediction accuracy and the
coverage of the decision regions produced by RI.

Recall that each representative interpretation produced
by RI for an input image x 2 X is a convex polytope P (x),
and P (x) induces a decision region that predicts all the im-
ages it covers as Class(x).

If the predictions made by a decision region have a
high accuracy, then the corresponding interpretation will be
closer to the real decision logic of the CNN F . If the convex
polytope of the decision region covers a lot of images, then
the interpretation is representative.

Based on the above insight, we design the following ex-
periments to analyze the prediction accuracy and the cover-
age of the decision regions produced by RI.

For each dataset, we first follow the steps in Section 6.4
to generate a set V of interpretations using RI. Each in-
terpretation v 2 V corresponds to a convex polytope that
induces a decision region. This gives us a number of |V |
decision regions in total.

As illustrated in Section 6.4, we set |V | = 40 for RO,
and |V | = 20 for the other datasets.

For each decision region produced by RI from an input
image x, we predict all the images covered by the corre-
sponding convex polytope as Class(x).

If an image x0 2 X is covered by multiple convex poly-
topes, we predict the label of x0 by the decision region in-
duced by the convex polytope that covers the largest number
of reference images.

We evaluate the accuracy of the predictions made by the
decision regions of RI by the following two types of predic-
tion accuracies.

The first one, denoted by ACU-GT, is the prediction ac-
curacy computed using the ground truth labels of the im-
ages. A higher ACU-GT means the decision regions work

better in accurately predicting the ground truth labels of the
covered images, which further indicates the corresponding
interpretations are likely to capture some useful patterns for
making accurate predictions.

The second one, denoted by ACU-MD, is the prediction
accuracy computed by treating the labels predicted by the
CNN model F as ground truth. A higher ACU-MD means
the predictions made by the decision regions align better
with the predictions made by F , which further indicates
the corresponding interpretations are closer to the decision
logic of F .

We also evaluate the coverage (CVR) of the decision re-
gions by the proportion of images that are covered by at
least one of the |V | decision regions. A larger CVR means
a higher representativeness of the interpretations.

We run RI for 5 independent times and compute the
mean and standard deviation for each of ACU-GT, ACU-
MD and CVR.

Table 2 shows the ACU-GT, ACU-MD and CVR perfor-
mance of RI and the CNN model F on the reference datasets
and unseen datasets of ASIRRA, GC, RO and FOOD.

Since the interpretations produced by the baseline meth-
ods cannot be used as classifiers to make predictions on im-
ages, we cannot report their ACU-GT, ACU-MD and CVR
performance.

As shown in Table 2, the decision regions produced by
RI achieve very high ACU-GT on both the reference dataset
and the unseen dataset. This means the decision regions
capture some useful representative patterns to make accu-
rate predictions.

The ACU-GT of RI sometimes outperforms the original
CNN model F . This is because the ACU-GT of RI is com-
puted on the covered images, but the ACU-GT of F is com-
puted on the complete set of images, which may contain
more misclassified images.

The decision regions also achieve very high ACU-MD
on all the datasets. This indicates that the predictions made
by the decision regions align very well with the CNN model
F . Thus, the corresponding interpretations are closer to the
decision logic of F .

The CVR of RI is also very large. With 40 interpreta-
tions for RO and 20 interpretations for the other datasets,



(a) Reference dataset of ASIRRA (b) Unseen dataset of ASIRRA

(c) Reference dataset of GC (d) Unseen dataset of GC

(e) Reference dataset of RO (f) Unseen dataset of RO

(g) Reference dataset of FOOD (h) Unseen dataset of FOOD

Figure 5. The ACU-GT performance of RI on the reference and
unseen datasets of ASIRRA, GC, RO and FOOD.

the proportion of images covered by the corresponding de-
cision regions is more than 97% on all the datasets.

Recall that an interpretation of RI generally applies to all
the image covered by the corresponding decision region, a
large CVR demonstrates the outstanding representativeness
of the interpretations produced by RI.

E. Parameter Analysis

In this section, we analyze how the cardinality of Q, de-
noted by |Q|, affects the ACU-GT and ACU-MD perfor-
mance of RI on every dataset.

We follow the same experiment setting as Appendix D to
compute the mean and standard deviation of the ACU-GT
and ACU-MD of RI for 6 different values of |Q|, such as 1,
5, 10, 30, 50 and 70.

Figure 5 shows the ACU-GT of RI and the CNN model
F on the reference and unseen datasets of ASIRRA, GC,
RO and FOOD.

Each solid point on the blue solid curve shows the mean
ACU-GT of RI, and the corresponding error bar shows the
standard deviation of the ACU-GT of RI.

The ACU-GT of F is a single scalar for each value of
|Q|, thus we draw the ACU-GT of F as a dashed curve
without error bars.

Figure 6 is drawn in a similar way as Figure 5 to show
the ACU-MD of RI and F on each dataset. The ACU-MD

(a) Reference dataset of ASIRRA (b) Unseen dataset of ASIRRA

(c) Reference dataset of GC (d) Unseen dataset of GC

(e) Reference dataset of RO (f) Unseen dataset of RO

(g) Reference dataset of FOOD (h) Unseen dataset of FOOD

Figure 6. The ACU-MD performance on the reference and unseen
datasets of ASIRRA, GC, RO and FOOD.

of F is always 100% because the prediction results of F is
used as ground truth to compute ACU-MD.

We can see from Figure 5 and Figure 6 that the ACU-GT
and ACU-MD of RI are small when |Q| is small. This is
because every convex polytope produced by RI consists of
some linear boundaries in Q. If the number of linear bound-
aries in Q is too small, a convex polytope produced by RI
will not have enough linear boundaries to approximate the
complex decision logic of F . Therefore, the ACU-GT and
ACU-MD of RI will be compromised.

We can also see that, when the cardinality of Q increases,
the ACU-GT and ACU-MD of RI first increase and then be-
come stable when |Q| is large. The reason is that increas-
ing the number of linear boundaries in Q largely improves
the descriptive power of the convex polytopes produced by
RI, thus the ACU-GT and ACU-MD of RI increases sig-
nificantly in the beginning. However, when the number of
linear boundaries in Q is large, existing linear boundaries
in Q are good enough to produce high-quality convex poly-
topes, thus adding newly sampled linear boundaries into Q
will not further increase the ACU-GT and ACU-MD of RI
very much. In consequence, the ACU-GT and ACU-MD of
RI become stable when Q is large.

Recall that a high ACU-GT indicates that the interpreta-
tions produced by RI capture some useful patterns of data to
make accurate predictions; and a high ACU-MD means the



Figure 7. The relationship between the difference score and the
number of interpretation actions. The x-axis represents the num-
ber of interpretation actions, which is between 0 and 150. The
y-axis represents the difference score.

interpretations produced by RI is close to the decision logic
of F . According to the results in Figure 5 and Figure 6,
since the ACU-GT and ACU-MD of RI are large and stable
on all the datasets when |Q| is larger than 50, we simply
set |Q| = 50 for RI to achieve outstanding interpretation
performance in our experiments.

F. A/B Test on Retina OCT Dataset

In this section, we conduct an A/B test on the Retina
OCT (RO) dataset to demonstrate the effectiveness of RI in
improving the diagnosis accuracy of human on retina dis-
ease.

The setting of the A/B test is as follows.
Task: we formulate a binary classification task using im-

ages from the two classes of NORMAL and DME in the RO
dataset. NORMAL represents the images of normal retina
and DME is a type of retina disease. The goal of the task is
to predict whether an input image is NORMAL or DME.

The CNN model and the interpretation method: we
train a VGG-19 model [53] to achieve a testing accuracy of
97% for the binary classification task between NORMAL
and DME. We use RI to produce representative interpreta-
tions on the VGG-19 model.

Subjects: the subjects of the A/B test is a group of 20
people without any knowledge background on retina dis-
ease. To prepare these people for the binary classification
task, we give the same written tutorial to each subject to
teach them the basic skills to distinguish between NOR-
MAL and DME. Every subject has 10 minutes to read the
tutorial.

Test A: the test A consists of 50 multiple-choices ques-
tions. Each question requires the subject to answer whether
a retina image is NORMAL or DME. The choices of an-
swers are: ‘Definite DME’, ‘Maybe DME’, ‘Not sure’,
‘Maybe NORMAL’, and ‘Definite NORMAL’. A ‘Not sure’
answer receives a score of 0. For answers with ‘Maybe’, a
correct one receives a score of +1, but a wrong one receives
a score of -1. For answers with ‘Definite’, a correct one re-
ceives a score of +2, but a wrong one receives a score of -2.
Every subject taking test A will see the prediction results
of the CNN model on the input retina images. However,
to simulate the practical scenario that many people may not

trust a machine learning model in making diagnosis, we lie
to every subject that the CNN model only has a testing ac-
curacy of 80%. Every subject is taking the same set of 50
questions, but the order of the questions is randomly gen-
erated for each subject. The sum of the scores of the 50
questions are collected as the final score for each subject in
test A.

Test B: the test B follows exactly the setting of test A.
The only difference is that a subject is able to see the inter-
pretation result generated by RI for each input retina image.
We allow a subject to freely choose whether or not to see
the interpretation result for the input image of each ques-
tion. We log three types of interpretation actions when a
subject sees the interpretation result; these actions include:
(i) ‘show similar images’ shows the similar retina images to
the input image ranked by RI; (ii) ‘show heat map’ shows
the heat map generated by RI on the input retina image and
the similar retina images; and (iii) ‘Zoom in’ enlarges the
similar images to show more details. The sum of the scores
of the 50 questions are collected as the final score for each
subject in test B.

Every subject is required to take Test A first and then take
test B. Since the orders of the 50 questions are randomly
generated for every test, it is very difficult for a subject to
memorize his/her answers in test A when taking test B.

Every subject produces a final score for test A, denoted
by ‘Score A’, and a final score for test B, denoted by ‘Score
B’. We collect the difference score between Score B and
Score A, that is, Score B minus Score A, for each subject.
This produces 20 difference scores.

A larger difference score means Score B is higher than
Score A, which indicates using interpretations produced by
RI can improve the diagnosis accuracy of human on retina
disease.

Recall that we also log the interpretation actions of each
subject in test B. We collect the total number of interpreta-
tion actions of each subject to measure how often a subject
uses the interpretation results produced by RI.

We draw the results produced by the 20 subjects as the
blue points and the corresponding error bars in Figure 7.
Denote by (x, y) the coordinates of a blue point, y is the
mean of the difference scores of all the subjects whose num-
bers of actions fall into the interval of (x, x + 30]. The
corresponding error bar shows the standard deviation of the
difference scores of the subjects. There is no blue point for
x = 60 since there is no participant whose number of inter-
pretation actions is between 60 and 90.

Figure 5 shows that a more frequent use of the interpre-
tation results produced by RI contributes to a higher differ-
ence score. This demonstrates the high effectiveness of RI
in helping people making more accurate diagnosis on retina
images.

G. More Interpretation Examples of RI

We present more examples in Figure 8 to show the good
interpretation performance of RI on each of ASIRRA, GC,
RO and FOOD.

We can see from the results that the representative in-
terpretations produced by RI always highlight meaningful
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Figure 8. Representative interpretations produced by RI on ASIRRA, GC, RO and FOOD. For each figure, the first column is the input
image and the rest of the columns are the similar images ranked by RI. (a) and (b) show the interpretation results on two images of the class
‘cat’ in ASIRRA. (c) and (d) show the interpretation results on two images of the class ‘dog’ in ASIRRA. (e) and (f) show the interpretation
results on two images of the class ‘female’ in GC. (g) and (h) show the interpretation results on two images of the class ‘male’ in GC. (i),
(j), (k) and (l) show the interpretation results on the images of the classes ‘NORMAL’, ‘CNV’, ‘DME’ and ‘DRUSEN’ in RO, respectively.
(m) and (n) show the interpretation results on two images of the class ‘food’ in FOOD. (o) and (p) show the interpretation results on two
images of the class ‘non-food’ in FOOD.

common parts of the input image and the similar images.
For example, the faces of cats and dogs in Figures 8(a)-8(d),
and the beard of male in Figures 8(g) and 8(h).

Obviously, showing similar images with common high-
lighted parts as the input image makes our interpretations
more convincing than showing only the interpretation on
the input image.

The results in Figure 8 further demonstrate the outstand-
ing performance of RI in producing representative interpre-
tations to reveal the common decision logic of a CNN on
an input image as well as the images that are similar to the
input image.


