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A. Mean-field inference

Recap that we denote the input image as I , and have a
set of box region proposals R = {rn|n = 1, ..., N}. Each
box proposal corresponds to an RoI feature map fn of size
C×H ×W . Additionally, the box proposals correspond to
a set of object masksM = {mn|n = 1, .., N}, where each
mn is an H ×W probability map.

Without loss of generality, we assume xn ∈ {0, 1}H×W
is the labeling of a box rn from current batch, and xs ∈
{0, 1}H×W is the labeling of an intra-class box rs, where
s ∈Nc(n) is an index of all the retrieved boxes. We denote
mn and ms the predicted mask probability maps and In

and Is the cropped RGB images of rn and rs. We further
denote i, j, k the indices of box pixels and Np(i) the set
of 8-connected immediate neighbors of pixel i. We also
assume a dense correspondence Tns has been established
between rn and rs based on the cost volumeC = Cu+Cg .
The mean field inference method is shown in Algorithm 1:

B. Sinkhorn’s algorithm

Given any cost volume C, we use Sinkhorn’s Algo-
rithm [1] to find out the one-to-one assignment approxi-
mately. We define a threshold function ϕo(x) = 1[x >
0.5]∗0.4+0.6, and use the function to obtainµa = ϕo(ma)
and µb = ϕo(mb). The Sinkhorn’s algorithm to obtain the
transport matrix is described in the Algorithm 2:

C. Additional implementation details

C.1. Data loading and augmentation

DISCO-BOX follows the original data loading and aug-
mentation settings in YOLACT++ and SOLOv2:
YOLACT++. In YOLACT++ [2], an input image is resized
without changing its aspect ratio so that its longer side is
equal to L. Random cropping is then applied on the resized
image crop size L × L. In case the crop goes outside the
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Algorithm 1 Mean Field Inference.
1: procedure MEAN FIELD(mn,ms, In, Is,Tns,C)
2: ϕ(x) = 1[x ≤ 0.5] ∗ 0.3 + 1[x > 0.5] ∗ 0.7 .

threshold function.
3: qn ← − log(ϕ(mn)), qs ← − log(ϕ(ms))

4: k(i, j)←− w1 exp(−
|In

i −I
n
j |

2

2ζ2 ) . pairwise kernels
5: while not converge do . iterate until convergence
6: for i ∈ rn do
7: q̂ni ← 0
8: for j ∈N(i) do . pairwise potentials
9: q̂ni ← q̂ni + k(i, j)qnj

10: end for
11: for s ∈Nc(n) do
12: for k ∈ rs do . cross-image potentials
13: x̂ni ← x̂ni + w2Tns(i, k)C(i, k)xsk
14: end for
15: end for
16: end for
17: qn ← ϕ(exp(−q̂n − qn)) . local update
18: normalize qn . normalization
19: qn ← − log(qn)
20: end while
21: xn ← 1[exp(−qn) > 0.5]
22: return xn
23: end procedure

image, the outside part of the crop is filled with the mean
RGB values. Color jittering and random flipping are then
applied on top of random cropping as data augmentation.
The original paper of YOLACT++ has reported results with
different L such as 550 and 700. We follow the same setting
of loading and augmentation with L = 550.

SOLOv2. SOLOv2 [3] also resizes the longer image side
to L. Random cropping is then applied on the resized image
with crop size L×W = 1333×800, where L and W always
correspond to the longer and shorter side of the resized input
image, respectively. Random flipping is applied on top of
random cropping as data augmentation. Our DISCO-BOX



Algorithm 2 Sinkhorn’s Algorithm
procedureH(C,µa,µb, ε, tmax)
K = e(−C/ε)

b← 1
t← 0
while t ≤ tmax and not converge do
a = µa

Kb
b = µb

Kᵀa
end while
T = diag((a))Kdiag(b)
return T

end procedure

with SOLOv2 architecture follows the same data loading
and augmentation strategy with SOLOv2.

C.2. Learning and optimization

All our experiments are conducted on DGX-1 machine
with 8 NVIDIA Tesla V100 GPUs. Note that we follow the
same learning and optimization settings as YOLACT++ and
SOLOv2 as elaborated below:
YOLACT++. We follow the original setting of [2] for
DISCO-BOX with YOLACT++ architecture. We adopt a
batch size of 8 on each GPU. On COCO, the initial learn-
ing rate is set to 1 × 10−3 and is decreased to 1 × 10−4

and 1× 10−5 after 280K and 360K iterations, respectively.
Warm-up is used in the first 500 iterations to prevent gradi-
ent explosion. On PASCAL VOC 2012, the same warm-up
and initial learning rate is applied, and the learning rate is
decreased to 1×10−4 and 1×10−5 after 60K and 100K iter-
ations, respectively. It takes about 5 days to train on COCO
and about 12 hours on VOC12.
SOLOv2. We follow the original training settings of [3]
where multi-scale training are applied for ResNeXt-101-
DCN and ResNet-101-DCN backbones. On COCO, the
batch size is set to 2 on each GPU. The initial learning rate
is set to 1×10−2 and decreased to 1×10−3 and 1×10−4 af-
ter 26 epochs and 32 epochs, respectively. Warm-up is used
in the first 2000 iterations. It takes about 4 days to train on
COCO with a ResNet-50 backbone.

C.3. Object retrieval with memory bank

Pushing objects. We maintain an independent first-in-first-
out queue with size 100 for every category as the memory
bank. The RoI features and predicted masks of objects in
each batch are pushed into the memory bank. Note that the
RoI features and masks are obtained by the teacher network
with respect to the ground truth bounding boxes.
Retrieving objects. To construct intra-class pairs for ev-
ery batch during training, we define an object in the current
batch as a query, and use it to retrieve the RoI features and
mask probability maps of intra-class objects from a memory

bank. This allows us to conveniently construct pairs with-
out significant extra computation. Note that we empirically
set the maximum number of retrieved objects to be 10 for
every query object. This is done by random sampling from
the memory bank. We ignore the pairs when the bank size
(and thus the number of retrieved objects) is smaller than 5.

D. Additional visualization
Finally, we provide visualization of instance segmenta-

tion results which are not presented in the main paper due to
limited space. Fig. 1 shows the results obtained by DISCO-
BOX SOLOv2/ResNeXt-101-DCN on COCO. In addition,
Fig. 2 shows the results obtained by YOLACT++/ResNet-
50-DCN on VOC12. One could see that the predicted masks
are of high qualities in general, even though some examples
can be cluttered and challenging.
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Figure 1. Visualization of instance segmentation on COCO (SOLOv2/ResNeXt-101-DCN).

Figure 2. Visualization of instance segmentation on VOC12 (YOLACT++/ResNet-50-DCN).


