
SIMstack: A Generative Shape and Instance Model for Unordered Object Stacks
Supplementary Materials

Zoe Landgraf1, Raluca Scona1, Tristan Laidlow1, Stephen James1

Stefan Leutenegger2 and Andrew J. Davison1 *†‡

Abstract

In this supplementary document, we provide the fol-
lowing additional content: (1) complementary graphs for
our single-view evaluation and additional qualitative re-
sults comparing SIMstack to our baselines, (2) a more de-
tailed description of our multi-view optimisation pipeline,
(3) a detailed description of our network architectures and
(4) some additional qualitative examples showing results on
non-convex object scenes and a latent code analysis.

1. Single-view evaluation
In addition to our results reported in the main paper, we

show the corresponding graphs displaying results per sur-
face visibility ratio for predicted voxel occupancy and sta-
bility under physics simulation (Figures 1 and 2). We also
provide an additional evaluation of stability; in the case of
bad predictions (unstable decompositions), rolling objects
as well as intersecting objects, pushed apart by contact force
can cause large object centre displacements. To provide a
more intuitive notion of stability, we estimate the percent-
age of stable piles according to a stability threshold, which
we determine through observation. To allow some shuffling
of objects, but exclude falling objects, we set the following
threshold: we define a stack to be stable if none of its com-
posing objects’ centres move by more than 20cm and all
objects’ orientation change stays within 30◦. We plot the
percentage of stable stacks by surface visibility on our test
datasets in Figure 3.

We provide additional qualitative results on our Su-
perquadric (SQ) shape test dataset and our YCB object test
set, comparing SIMstack to our baselines (see Figure 4).

*Research presented in this paper has been supported by Dyson
Technology Ltd.

†1Zoe Landgraf, Raluca Scona, Tristan Laidlow, Stephen James
and Andrew J. Davison are with the Dyson Robotics Labora-
tory, Department of Computing, Imperial College London, UK.
zoe.landgraf15@imperial.ac.uk

‡2Stefan Leutenegger is with the Smart Robotics Lab, Department of
Computing, Imperial College London, UK.

Figure 1: We compare our C-VAE against SSCNet∗∗ and our
fully convolutional (FC) baseline for predicted (expected) voxel
occupancy. Left: test dataset of SuperQuadric shapes Right: our
YCB object test dataset.

Figure 2: We compare SIMstack and our fully convolutional
(FC) baseline in terms of stability under physics simulation (10000
steps) by computing the average object displacement per object
stack (m). Left: test dataset of SuperQuadric shapes Right: our
YCB object test dataset.

2. Multi-view optimisation
As shown in the main paper, SIMstack can integrate ad-

ditional views to improve reconstruction and instance seg-
mentation using multi-view conditioning and multi-view op-
timisation. In this section we provide more details on our
multi-view optimisation pipeline.

Differentiable Depth Renderer Our differentiable depth
renderer is based on SDF ray casting. Similarly to [1], we
use sphere tracing to render depth. While stepping along
each ray, we compute the exact SDF value using trilin-
ear interpolation. Jiang et al. [1] only backpropagate the

Figure 3: Percentage of stable piles generated according to our
stability threshold (all objects center displacement stays within
20cm and all objects orientation change stays within 30◦). Left:
test dataset of SuperQuadric shapes Right: our YCB object test
dataset.

gradients into the immediate neighbourhood of each ray-
surface intersection, which is correct when using a depth-
image based loss. Since we use a more precise SDF based
loss (Equation 1), we need gradients in the entire field of
view of the camera. Although there has been recent work
on fully differentiable sphere tracing [2], we choose a sim-
pler approximation, sampling SDF values at regular inter-
vals along every ray outside the surface to backpropagate
gradients within the entire camera frustrum. We estimate
our gradients using the binary loss described by Equation
(2). Parallelised, our method can render the full cost image
at an average runtime of 0.192s at a resolution of 640×480.
In comparison, [2] render an image of 512× 512 in 0.99s.

Cost Function Although related approaches use a depth
loss to optimise their latents [1, 3], we observe that for our
TSDF representation using a depth-based loss leads to an
incorrect definition at occlusion boundaries. We design an
SDF-based cost function composed of two parts: one de-
scribing the loss at the visible surface and one for the visi-
ble, unoccupied region of the scene. Let π−1 be the function
which backprojects a pixel ui of the depth image into the
3D scene and I is the trilinear interpolation function which
obtains the TSDF value at that point. The surface loss is:

Lsurface =
∑
Ω

I(π−1(ui)). (1)

The current TSDF is optimised towards alignment with this
surface data, but this loss doesn’t constrain on visible re-
gions of empty space. We therefore define an empty space
loss which penalises the code if it produces a negative TSDF
value in observed empty space. We sample at regular inter-
vals along rays in all regions of observed empty space and
define the empty space loss, which has a ‘space carving’
effect: Lempty space =

∑
s Lempty space,s, where:

Lempty space,s =

{
|I(s)| if I(s) < 0

0 if I(s) > 0
. (2)

Here s is a sampled TSDF value. Our final cost function is
the simple sum of both losses:

L = Lsurface + Lempty space. (3)

Optimisation (implementation details) We use first-
order optimisation to optimise our latent code against ad-
ditional depth images: Once the loss L is computed, we
backpropagate the gradients into the voxel-grid using in-
verse raytracing and trilinear interpolation, paralellised on
the GPU. For multiple depth images, we accumulate the
gradients of all views. We then leverage PyTorch autograd
to backpropagate the gradients through the generative de-
coder of our C-VAE and use Adam to generate gradient up-
dates.

Runtime Our multi-view conditioning method’s runtime
only depends on the time to generate a partial TSDF (5.2s
for 6 views using our TSDF Fusion method) from multiple
views as the forward pass time stays constant. It clearly out-
performs our multi-view optimisation method which takes
21s and 75s to optimise against 1 and 6 views respectively,
for 30 iterations.

3. Network Architecture Details

C-VAE We provide a detailed overview of our C-VAE in
Figure 5. Conditioning AutoEncoder Our conditioning
network is trained as an autoencoder, encoding and decod-
ing the partial TSDF generated from the input depth view.
Encoder and Decoder each have 5 convolutional layers with
2 linear layers compressing the feature maps into a 1D bot-
tleneck of 96. The encoder feature maps are used to con-
dition the encoder and decoder of the shape and instance
VAE. Shape and Instance VAE Our VAE’s encoder maps
input TSDF and instances to a common feature space using
two convolutional layers for each modality. The resulting
feature maps are concatenated and further compressed us-
ing 5 joint encoding layers. One linear layer maps our 3D
feature space to our 1D latent code of size 96 while 2 lin-
ear layers map it back to 3D. Our VAE 3D decoder mirrors
our encoder. We use Batch Normalisation (BN) and PRelu
activations in all of our hidden layers.

SSCNet Baseline We provide a detailed overview of our
adapted version of SSCNet in Figure 6. To fit this base-
line to our task which requires same-resolution output and
TSDF prediction, we adapt the SSCNet architecture by (1)
remove downsampling in most layers by adding padding (2)
adding an upsampling (deconv) layer at the end to generate
a prediction at the same resolution as the input and (3) pre-
dicting TSDF values instead of semantic labels.

Figure 4: Qualitative results comparing SIMstack (Ours) to our fully convolutional (FC) baseline and our SSCNet baseline
(SSCNet∗∗). We select a random viewpoint for each scene and display a random latent code sample for SIMstack.

Figure 5: C-VAE architecture

Figure 6: SSCNet∗∗ architecture

FC Baseline Figure 7 shows our fully convolutional (FC)
baseline architecture. We use a partial TSDF encoder
branch with the same SE and Residual units used in our C-
VAE, which splits into two task specific decoder branches.

Figure 7: FC baseline architecture

4. Additional Experiments

4.1. Decomposing more complex scenes

We test our method on real scenes with a collection of
non-convex objects and find that although trained on con-
vex shapes only, our approach (excluding parametric fitting)
shows some ability to generalise to such scenes. Our recon-
structions from different viewpoints for each scene show
that although instance decomposition varies across view-
points and in some cases instances are oversegmented, our
C-VAE is able to distinguish individual instances and gener-
ate a rough reconstruction of cups, bottles and even part of a
drill (see Figure 8). This suggests that our method could be
extended to more complex scenes with non-convex objects;
steps to achieve this could include augmenting the dataset
with non-convex shapes and using a different shape refine-
ment step.

4.2. Latent Code Analysis

In this final section, we provide additional experiments
which demonstrate the smoothness and consistency of our
joint shape and instance encoding.

Sampling from the latent space Given the design of our
C-VAE, sampling from its latent space generates different
proposals for occluded regions, while reconstruction of the
visible surface stays constant. We show example of this
on our Superquadrics test dataset in Figure 9. We show
the mean scene (zero code scene) along with random latent
code samples for a random viewpoint.

Figure 8: Qualitative results on real scenes with non-convex ob-
jects. The raw mesh segmentation of SIMstack is able to estimate
shape and decomposition of scenes with non-convex objects.

Figure 9: Sampling from the latent code of our C-VAE. Given a
single depth image of our SQ test dataset (left), we generate the
zero code scene and three latent code samples from our C-VAE.

Sampling with multi-view information We condition
our VAE on depth information to improve reconstruction in
visible regions and to allow the latents to focus on occluded
regions; sampling from those latents generates a variety of
propositions for shape and instance segmentation of those
hidden regions. Adding additional views increases the in-
formation about 3D space and should show a decreasing
variety in latent space samples. We demonstrate this on an
example from our Superquadrics test dataset in Figure 10.

Figure 10: How sampling variety changes as views are added.
Left: Ground truth and visible mesh area overlay (red). Right: 3
random latent space samples (without SQ fitting) for each view; as
data is added the samples are increasingly constrained.

Figure 11: Latent code interpolations between two random latent
code samples, conditioned on one view. We show three examples
of interpolating between scenes with the same number of instances
.

Latent code interpolation We qualitatively evaluate the
smoothness of our latent code by interpolating between ran-
dom latent code samples of a depth-conditioned 3D recon-
struction. Given a test scene and one viewpoint, we interpo-
late between two latent code samples to generate intermedi-
ary scenes. Our interpolations show a visibly smooth transi-
tion between scenes with the same number of instances (see
Figure 11) as well as realistic intermediary scenes for inter-
polations between scenes of varying numbers of instances
(see Figure 12): in the first example, the small object on the

Figure 12: Latent code interpolations between two random latent
code samples, conditioned on one view. We show four examples
of interpolating between scenes of varying numbers of instances .

top left present in sample 1 becomes smaller, then merges
into a long object which then shortens as interpolation ap-
proaches sample 2.

References
[1] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.

Sdfdiff: Differentiable rendering of signed distance fields for
3d shape optimization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2020. 1, 2

[2] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020. 2

[3] Edgar Sucar, Kentaro Wada, and Andrew J. Davison.
NodeSLAM: Neural object descriptors for multi-view shape
reconstruction. In Proceedings of the International Confer-
ence on 3D Vision (3DV), 2016. 2

