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Figure 1: Comparison with state-of-the-art.

Figure 2: Fixed region removal.

Visual Results. We provide animated images for Fig-
ure 1 and Figure 7 in the main paper (best viewed in
Adobe Acrobat Reader).

L1 regularization corrects artifacts caused by
occlusion. In principle, our method does not pose
any restriction on the background motion, as in general
the motion is handled by the wi’s that can be any map-
ping between the scene template to the images. How-
ever, in practice, limited by inaccurate optical flow at
the occlusion boundary, the method could mistakenly
aggregate occluded information, which leads to arti-
facts. Such artifacts at occlusion boundaries are also
reported by [1, 2]. In Figure 3 we show such an exam-
ple where inaccurate flow leads to artifacts in the L2

template. However, our L1 regularization successfully

corrects the artifacts, resulting in plausible appearance.
This shows the robustness to dynamic scenes of our L1

regularization.

Figure 3: Robustness to dynamic scenes. Inaccurate
flow leads to artifacts in the L2 template. Our L1 regular-
ization successfully corrects the artifacts.

Occlusion reasoning for fixed region removal
and dynamic scenes. Nevertheless, we provide a
solution specifically modeling occlusion in dynamic
scenes. In the main paper, we have shown the opti-
mizer of the scene template is given by

f∗(p) =

∑T
i=1 Ii(wi(p))1i(wi(p))Ji(p)∑T

i=1 1i(wi(p))Ji(p)
, p ∈ Ω (1)

To further address occlusion, we can add an occlusion
term to the optimizer:

f∗(p) =

∑T
i=1 Ii(wi(p))1i(wi(p))Ji(p)vi(p)∑T

i=1 1i(wi(p))Ji(p)vi(p)
, p ∈ Ω

(2)
where vi(·) is the indicator function of portion in the
scene template that visible in Ii.

To estimate vi(·), we can perform forward-backward
optical flow consistency check between the scene tem-
plate and Ii by

vi(p) =

{
0 if |w−1

i ◦ wi(p)|2 > T

1 else
(3)

1



where T is a threshold that controls the sensitivity of
occlusion estimation. In such a way, vi(·) measures the
visibility of content in the scene template. Figure 4
shows an example. In this example, multiple consec-
utive frames are aggregated into a template. With-
out occlusion reasoning, there are artifacts at the oc-
clusion boundary. Occlusion reasoning successfully re-
moves such artifacts. Note that the combination with
L1 provides even more rigid result.
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Figure 4: Occlusion reasoning improves the model’s
ability to handle dynamics. By further occlusion rea-
soning, our method successfully corrects artifacts at the
occlusion boundary.

Specifically, when running fixed region removal ex-
periments, enabling this occlusion reasoning improves
the inpainting performance, since the masks are likely
to pass an occlusion boundary. We tested fixed re-
gion removal following the same settings as the current
state-of-the-art method [1] on all sequences on DAVIS
2016. As stated in the main paper, the results are on
par with [1]. In Figure 5 we also showcase the scene
template that is constructed during fixed region in-
painting. The train in this scene is moving, and our
model is able to obtain a reasonable template and per-
form inpainting.

Figure 5: Fixed region inpainting and corresponding
scene template. Our model obtains a reasonable template
and performs inpainting.

Speed: Our approach (Algorithm 2 in the main pa-
per) runs at 3 seconds per frame on DAVIS, which is
comparable to state-of-the-art flow-guided inpainting
methods [2, 1]. The bottleneck is optical flow, which
we expect to improve.
Failure Cases. Typical failure cases are caused by
illumination change and optical flow failure. Figure 6

shows an example where all existing methods including
ours fail. The smoke from the drifting car changes the
illumination of the background. Our scene template
was constructed by pixel values from frames without
the smoke. Therefore the model still maps clear in-
stead of smokey scene parts to the masked region. Note
that the change in illumination also leads to failure in
optical flow estimation for both FlowNet2 and Sobolev
Flow. In such cases, ALL methods fail as the flow
cannot be accurately estimated, and rapid illumination
change makes it infeasible to propagate image content
across frames.
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Figure 6: A failure case. Typical failure cases are caused
by illumination change and optical flow failure.
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